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FOREWORD

This review is motivated by the possible appli-
cation of vortices to advanced nuclear rockets. It has
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confined vortex flows. I wish to thank my students in
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ular thanks are due Mr. R. N. Kumar for his help in
preparing the final manuscript, to Mr. H. Lakshmikantha
for help with Section 5.6 supported by NASA Grant NGR-22-
009-303, and to Mrs. J. Estey for her patient typing.
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I. INTRODUCTION

1.1 Examples of Confined Vortices

Vortex motions have long been recognized as an important part of fluid
dynamics. As early as the 15th century, Leonardo da Vinci sketched and des-
cribed various vortex motions he had observed. Since the late 19th century,
theoretical treatments of vortices have been intimately connected with the
search for particular solutions of the general equations of motions. Experi-
mental research has been motivated more frequently by particular applications
where vortex flows are desired or where they occur as an essential feature of
the flow. Studies concerning wing theory, turbines and compressors, meteorol-
ogy, cyclone separators and others have each developed a considerable litera-

ture on vortex flows as related to that particular application.

Rather than try to give a complete review of all types of vortex flow,
that would necessarily cover much of the field of fluid dynamics, this review
is restricted primarily to confined vortices of the type sketched in Figure
(1.1), where the fluid enters tangentially, spirals radially inward and exits
axially at some smaller radius. The most common example of this type flow is

the "bath-tub vortex'.

Fig. 1.] Vortex flow in

which fluid enters tan-

gentially, spirals rad-

ially inward, and exits

axially at some smaller
radius.

As a bath-tub drains, any resident angular momentum in the tub causes the
fluid to spiral. In an attempt to conserve angular momentum the tangential
velocity of a fluid particle increases as its radius decreases, producing the
familiar vortex located over the drain. The characteristic funnel shape is a
manifestation of the pressure gradient resulting from the centrifugal force

field of the swirling flow. For a given depth of fluid in the tub, the mass



flow through the drain is reduced by the vortex, since much of the pressure
head available to drive the flow has gone into the swirl motion. This effect
is the basis for the fluidic vortex valve which, although invented by Thoma
(1928), has only in the last few years become the subject of considerable
interest. The flow through the tub drain could be controlled by using a small
"control" flow to introduce angular momentum at the outer edge of the tub.

This provides all of the elements needed for a valve controlled by purely fluid
motion, i.e., a fluidic valve, Figure (1.2). Details of design and methods of
predicting performance will be discussed in Chapter VII, after the fundamental
fluid dynamics affecting this flow have been reviewed in some detail in the

earlier chapters.
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Fig. 1.2 Schematic view of typical vortex valve

Some of the first intensive studies of confined vortices were motivated
by the observations of Ranque (1934) and Hilsch (1947) that by blowing tangenti~
ally into a cylindrical tube one can obtain separate supplies of hot and cold
gas. A typical arrangement for a Ranque-Hilsch tube is shown in Figure (1.3).
Westley (1954) has surveyed work done investigating the Ranque~Hilsch effect.
Although no one has been able to come up with a completely satisfying theory that
checks with experiment quantitatively, it is now generally accepted that the
energy separation is caused by the combined effects of centrifugal force, diffu-
sion and dissipation (Hall, 1966). As the gas expands toward the axis through

the pressure drop set up by the centrifugal force, it is cooled and its tangential



velocity is increased. But the tangential velocity must go to zero on the
axis. This is accomplished by transporting angular momentum radially outward

by laminar or turbulent diffusion. Since the cooled gas loses part of its

Cold L\— —_— -/'ﬂ
Exj't‘:_i__—d__—--—é___:ﬁ' Hot
e )_ ______ )—_—— ——--9\1 Exit

Fig. 1.3 Flow Pattern in Ranque-Hilsch Tube

kinetic energy in the process of momentum diffusion, it must exit the tube with
a lower total temperature than that with which it entered the tube. The diffu-
sion of the angular momentum to larger radii produces dissipative heating that
can raise the total temperature in this region. The Ranque~Hilsch effect will

be discussed in more detail in Chapter IX.

Chapter IX also considers what has been the most useful application of a
confined vortex flow, that of a cyclone separator. Particles larger than a few
microns diameter (Rietema and Verver, 1961), can be separated from a gas by

forcing the mixture to flow through a vortex tube. A popular arrangement for

the tube is -given in Figure (1.4).

The shape of the tube is selected to take advantage of the secondary flows
generated by the wall boundary layers. The fluid in the wall boundary layers
feels a lower centrifugal force than the fluid outside the boundary layers,
since the tangential velocity must go to zero at the surface of the wall. If
the radial pressure gradient remains constant across the boundary layer, this
means that a radial flow is necessarily induced in the boundary layer to account
for the difference in pressure gradient and centrifugal force there. The second-
ary flow induced in this way is clearly evident in Von Karman's (1921) solution
for the boundary layer on a retating disk. In the present configuration the
secondary flow of principal interest is radially inward along the conical wall.
This serves to carry the particles, that have been centrifugally thrown out of
the core vortex to the wall, along the wall to the reservoir at the tip of the

cone.

The secondary flows, which play an important role in the cyclone separator



are a common feature of almost all confined vortices. The first recognition

clean gas

* exits

- —P—l
Mixture

enters tangentially

Secondary flow
carries particles to
reservoir

dust and particles
collect here

Fig. 1.4 Sketch of typical cyclone scparator.

of the way in which a rotating boundary layer can generate a radial flow when
the flow outside the boundary layer is purely tangential appears to have been
by Ekman (1905) in his studies of ocean currents. The Ekman spiral describes
how the velocity vector changes direction in a boundary layer dominated by rota-
tion. The Ekman boundary layer is described by linear equations since the flow
is a small perturbation about the state of uniform rotation. The first corres-
ponding, complete nonlinear solution was provided by Bodewadt (1940). A great
deal of effort will be devoted in Chapter III to describing subsequent attempts
to obtain other solutions to the rotating boundary-layer problem. The radial
flow generated by the boundary layer, i.e., the so-called secondary flow, has
long been recognized, (see, for example, the movie on "Secondary Flows' by E. S.
Taylor, produced by the National Committee for Fluid Mechanics Films) but until
recently little attention had been given to the strong effect it may have on
the primary rotating flow external to the boundary layer. Although the flow

induced into the boundary layer is very small (of the order of the square root



of the product of viscosity times rotation rate), it may be sufficiently
large to have a dominant role in the conservation of angular momentum balance

in the external flow (Rott and Lewellen, 1966).

.This review is supported by the promise of perhaps achieving an advanced
space propulsion system utilizing a nuclear fuel in the gaseous state. Kerre-
brock and Meghreblian (1961) proposed the use of a vortex tube to suspend an
annulus of gaseous nuclear fuel while hydrogen flows through the tube and is
heated by the fuel,Fig. (1.5). McLafferty (1968 and 1969) has reviewed the
evolution of vortex containment concepts for a gaseous nuclear rocket. Proper
assessment of the various schemes requires a thorough knowledge of confined vor-

tex flows. Assessment of these schemes will be discussed in Chapter VIII.
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Fig. 1.5 Gas core nuclear rocket as proposed by Kerrebrock and
Meghreblian (1961)

1.2 Some Experimental Observations

Before getting enmeshed in solving for various mathematical models of the
flow, let us seek some physical insight into the flow by looking at some experi-
mental observations. A typical pressure distribution taken radially along the
chamber end wall opposite the exhaust is shown in Fig. (1.6a). Notice the sharp
drop in pressure due to the centrifugal force field of the vortex. The pressure
on the centerline is often less than the ambient pressure to which the flow is
exhausting. Tangential velocity distributions derived from the pressure distri-
butions are shown in Fig. (1l.6b). Typically, the velocity distirbution shows
that circulation is nearly constant (corresponding to v« l/r) at large radii

and transitions to nearly uniform angular velocity (corresponding to ve T )



near the axis. The maximum tangential velocity occurs in the transition region,

the radial position of which may be expected to be determined by a balance be-

tween convection and dissipation.
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Fig. 1.6 (a) Typical pressure distributions on the end wall
of a vortex chamber.

(b) Tangential velocity distributions obtained by
differentiating the pressure distributions.
(Roschke, 1966).



The pressure drop across a vortex reduces the mass flow out the
exhaust for a given pressure differential. This may be illustrated by a typical

plot of the mass flow through a vortex valve as a function of control flow
(Fig. 1.7).

Qutlet Flow 1
Maximum
Outlet Flow

Control Flow
Maximum Outlet Flow

Fig. 1.7 Typical Vortex Valve Performance Curve.

To obtain this performance curve the pressure drop across the valve (the
difference between supply pressure and outlet pressure) is held constant
while the control flow is increased by increasing control pressure. As

more of the potential energy available for driving the flow through the
valve is diverted into swirling kinetic energy, flow through the valve is
sharply reduced. The curve is terminated at the point where the supply flow
is shut off and the output flow is just equal to the control flow. The
quantity of control flow required to shut off the supply flow depends on the
geometry of the valve. It might be expected that the higher the angular
momentum introduced per unit control flow, the lower the flow through the
valve at supply flow shutoff. However, this is not always true. For instance,
if the angular momentum is increased by increasing the radius ratio between

the injection of the control flow and the valve outlet, minimum flow is found



to occur at some moderate value of radius ratio (from 5 to 10). The end-wall
boundary layers play a dominant role in determining this optimum value of

radius ratio.

It may not be too surprising that flow in such a narrow "pancake" vortex
tube as that normally used for a valve can be dominated by the boundary layers,
but it is more striking to observe that even flow in chambers with large ratios

of length-to-diameter (L/D) are dominated in a similar way. Figure (1.8) shows
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Fig. 1.8 Velocity Profiles in the End-Wall
Boundary Layer of a Vortex Chamber.
(Kendall, 1962)

velocity profiles in the end-wall boundary layer for a chamber with L/D =1
(Kendall, 1962). Note that within the accuracy of his measurements there ap-
pears to be no radial flow outside of a thin boundary layer that occupies only
1% of the chamber length. Apparently all of the radial mass flow is passing
through the chamber by way of the end-wall boundary layers. Another important
feature of the boundary-layer profile is that the tangential velocity appears
to overshoot its external value. How can this apparent contradiction happen?
Since the radial flow in the boundary layer is much larger than that in the ex-
ternal main flow, it is possible for the circulation (vr) of a fluid particle
to be more nearly conserved as it moves radially inward in the outer regions of

the boundary layer than it is in the external main flow.



The strong boundary-layer flows can also lead to large axial flows.
Figure (1.9) shows the sketch of a three-dimensional flow pattern observed
in a typical vortex tube (Rosenzweig, Ross, and Lewellen, 1962). This pat-
tern was visualized by injecting dye through a hypodermic probe into the flow
at various positions. Figure (1.10) shows the observed dye. pattern for the

probe in two different positioms.

Fig. 1.9 Sketch of three-dimensional flow in jet—-driven vortex
tube. (Rosenzweig, Ross, and Lewellen, 1962)

In Fig. (1.10a) the probe tip is positioned near the outer edge of the
region identified as region B in Figure (1.9) and in the upper portion of the
lower boundary layer. Dye is being convected upward as indicated by the arrows.
Within this annulus of upward flow, there is a core of flow directed down to-
ward the exhaust where the flow exits the chamber. This downward core of flow
is approximately the same diameter as the exhaust diameter. In Figure (1.10b)
three axial flow regions are visible. For this picture, the probe is posi-
tioned at mid-radius in the upper boundary layer. Now region A and part of
region C appear dark while region B is relatively clear since it is supplied

with clear fluid from the lower end-wall boundary layer.



Figures (1.9) and (1.10), of course, show only the radial and axial flow

PROBE

INJECTION

-PROBE

EXHAUST
HOLES -

Fig. 1.10 Photos of three-dimensional flow patterns
(Rosenzweig, Ross and Lewellen, 1962)

pattern. The actual flow consists of a strong tangential velocity super-imposed
on the indicated flow pattern. A striking feature of the tangential velocity
distribution is that it is essentially a function of radius only, outside of the
thin boundary layers on the walls, even though there is a three-dimensional char-
acter to the flow pattern. This preference for two dimensionality is a common
feature of all flows dominated by rotation. It was theoretically predicted by
Proudman (1916) and observed experimentally by Taylor (1921) and is now known as
the Taylor-Proudman theorem (Greenspan, 1968). This characteristic will be dem-
onstrated mathematically later, but physically it may be viewed as a result of
the balance between centrifugal force and the radial pressure gradient. If the
flow is dominated by rotation then the pressure field also must be dominated by
rotation, resulting in a pressure gradient that is directed perpendicularly to
the axis of rotation. Any variation in the tangential velocity parallel to the
axils of rotation would imply an imbalance between the centrifugal force and the
pressure gradient forcing a flow adjustment. If these adjustments are to be small
in comparison with the primary flow (i.e. the flow is dominated by rotation) then
the variation in the tangential velocity parallel to the axis of rotation must be

small.
1.3 Mathematical Formulation

Let us turn now to a formulation of the mathematical equations that must

be solved to make our understanding of confined vortex flows more precise.

10



The principal conservation equations for a fluid in motion may in general

be written as (Lagerstrom,1964):

Conservation of mass

Do v & =
pe. T P divd 0 (1.3-1)
Conservation of momentum
-> > >
_Dg 1 = PR -
Dt + 5 grad p = f + P divt (1.3-2)
Conservation of Energy
DH . 1
DH - 1 ap__ 1 oo Ly ol
Dt 5 T > div dh +f . g+ 5 div (1q) +1I (1.3-3)

where p is the density,g the velocity vector, p the pressure, T the shear
stress tensor, H the total enthalpy, ZH the heat flux vector, ? the
volume force vector per unit mass, I the energy source per unit mass and
the symbol D/Dt denotes the sum of the local rate of change with respect to
time, 9/9t, and the convective rate of change, Z .V

Some equation of state for the fluid, (e.g. for a perfect gas,

H= vy = B 4
Y-1 &
must be specified before Eqs. (1.3-1 - 1.3-3) form a complete set. These

g2 > .
> ) and the dependence of T and qy on the other variables

auxiliary conditions are specified differently in the various models to follow.
Since we are dealing with vortex motions it is often convenient to deal

>
with the vorticity aw of the flow. The vorticity vector is defined as

> > >

w = curl q (1.3-4)
and is equal to twice the instantaneous angular velocity of a fluid particle
about its own axis. An equation for the change in vorticity can be obtained
by taking the curl of Eq. (1.3-2). This leads to

—> -
dw  + E.Vg - E.VE + o w .E) = c;rl [ —% g?ad P+ f +-% d;v T ]
ot

(1.3=5)

11



When this is combined with Eq. (1.3-1), it may be written as

D

a*.
DL iv 1 ]

p (g/p) - E.VE = zurl [ :%— grad p+ % +

(1.3-6)

If the body force is conservative (i.e., the force is derivable from a
potential field) and the fluid is barotropic (i.e., the density at any point
is a function of the pressure only and %-é;ad p = ngd I-EB- ) then
Eq. (1.3-6) reduces to

o —=— (/o) ~u'Va = durl [—i— div T ] (1.3-7)

D

If the right-hand side, representing dissipation is ignored and p is assumed
constant, this last equation may be used to prove Helmholtz's theorem that a vor-—
tex tube (made up of lines tangent to the local vorticity vector passing through
a small closed curve) moves with the fluid and its strength remains constant (see

Batchelor, 1967).

Rather than carry on a general discussion of vorticity dynamics for such a
discussion see Truesdell, 1954) let us turn attention to more specific flow models
to apply for a confined vortex. The approach taken herein is to treat the same
basic flow problem in different flow regions; inviscidly in Chapter II, with
laminar viscous flow in Chapters III and IV, and as turbulent flow in Chapter VI.
In view of the relatively simple flow problem to which attention is being re-
stricted, it may come as a surprise to the reader that so much work has been done
with so many questions still unanswered. The applications considered in the last

chapters will use the results of the flow regime that appears most appropriate.

12




II. STEADY, INVISCID, POTENTIAL FLOW MODEL

2.1 1Introduction of the Stream Function

For inviscid flow, the shear stress 1t and heat flux vector _cﬁH are equal

>

to zero. Equation (1.3-7) for this case becomes a homogeneous €quation in W
and if there is no vorticity introduced at the boundaries or as initial con-

ditions, then

5 =0 (2.1-1)

The three components of this equation for axisymmetric flow with r, e, and

z components of velocity equal to u, v, and w are

radial component: V.o (2.1-2)
z
axial component: 1 3rv _ 0 (2.1-3)
r 9r
tangential component: du _dw_ (2.1-4)
oz or
It follows from Eqs. (2.1~2) and (2.1-3) that
rv = const. = T (2.1-5)
The constant I' is the circulation of the flow divided by 2 7., This leaves Egs.

(2.1-4) and 1.3-1) to determine u and w together with the boundary conditions

for any particular problem.

A streamfunction, ¥ , can be introduced to satisfy Eq. (1.3-1) for steady
flow Y oY _

(2.1-6)

This definition allows ¥ to be positive for negative u corresponding
to radial inflow, the case of most interest in Fig. (1.1). When Eq. (2.1-6)

is introduced into the tangential component of the vorticity equation, it

may be written after some manipulation as
2

3%y 3Y d%np ., 3% 1 ay
S T a, .+t~ [1+r3npl =0 2.1-7
8z2 o9z o0z 5 r2 r or T ( )
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To determine the flow it is still necessary to specify an equation of state.
Two different cases are considered here, incompressible flow and isentropic

flow.

2.2 Incompressible Flow
If the density is comstant, Eq. (2.1-7) reduces to
2 2
oY ¥ _1a¥ _ (2.2-1)

azz 3r2 r or

A general solutlon to this linear equation can be obtained by separation of
the variables. Thils leads to solutions of the form

y = otk [3,(kr) + Y, (kr)] (2.2-2)

where k is the separation constant and J1 and Yl are independent solutions
of Bessel's Equation of first order.

The problem now is to provide boundary conditions appropriate for a
confined vortex. The flow of most concern here is that in which the flow
is introduced into a chamber at a large radius with some swirl and ex-
hausts at some smaller radius. For concreteness, consider flow through the

container with a rotating, porous, cylindrical wall sketched in Figure (2.1).

Assume that

_T
vev, = /rw
__1m _
us=u = /2nprw2 at r r, and 0 <z < ¢
w=20 (2.2-3)

Fig. 2.1 Sketch showing coordinate system
for cylindrical vortex chamber.
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and w = 0 at z = £ and at z = 0 for r > LI Here the subscript w denotes the
value at the surface of the cylindrical wall. The difficulty comes in
specifying conditions at z = 0 for r < L Equation (2.1-5) calls for

v to approach infinity at the axis, r = 0. Since this singularity cannot
exist in nature the region of flow in the immediate neighborhood of the

axis must either be excluded or the inviscid model abandoned. In order to
preserve the inviscid assumption it is assumed that the flow does not pene-
trate to the axis, i.e., there is a region r < rc(z) in which there is no
flow with p equal to a constant. The problem now hinges on some valid

means of determining rc.

Binnie and Hookings (1948), in analyzing a series of experiments with
swirling water flowing through a nozzle in the presence of an air core,
argued that the core size should be determined by the condition that flow
through the nozzle be a maximum for the given driving pressure difference
across the nozzle. This is equivalent to asking that for a given mass flow
the change in pressure (or potential energy) across the nozzle be a mini-
mum. For a small r, the core pressure is low due to the high swirl velocity,
while for a large r, the core pressure is low due to the high axial velocity
required to pass the mass flow through a small annulus. From this tradeoff
between w and v it is evident that a particular value of r, will maximize
the core pressure. Smith (1962) applied the same condition for gas flow
in a cyclone separator.

Mathematically, the exhaust constraint can be formulated in the follow-
ing manner. First, the radial velocity may be assumed small in comparison
to v and w in the plane of the exhaust. The condition of irrotationality
(Eq. 2.1-4) then reduces to we = const for r < r i.re, or in terms of

c =
the mass flow through the container, m,

_m 2 2 =
w, = /Trp(re -r, ) (2.2-4)
Also from Eq. (2.1-5)
r
ve =7 (2.2-5)
e

Since the exhaust constraint invelves a pressure condition we turn to the
momentum equation which for the present flow reduces to Bernoulli's

Equation

15



L 2 +vd = -
pt+5 (v +w) =p (2.2-6)

where P, is the uniform total pressure of the flow into the chamber. At
the radius of the core, r.s Eq. (2.2-6) with the aid of Eqs. (2.2-4) and

(2.2-5) may be written as

T 2 2
i 2A
~ + o =2 (p-p) =22 (2.2-7)
r2 [om (r 2_r 2)]2 p o‘'c P
e e c
If dimensionless variables are defined as:
2
2 _ pl

a” = / 2

2re Ap (2.2-8)

the fraction of the total kinetic energy invested in swirl at the outer

edge of the exhaust;

_ A1y
Q= 2 Lgay (2.2-9)

the volume flow normalized by its maximum possible value; and the dimension-

less radius ratio X, =T /re, then Eq. (2.2-7) may be written

c
N T
2 (1- 2)2 (2.2-10)
% %
When Eq. (2.2~10) is solved for Q, it yields
2,1/2 (2.2-11)

Q= (-x Ha-a’/x %)

The exhaust constraint proposed in the last paragraph calls for deter-
mining x_ as a function of o by maximizing a-with respect to X, for any

given a, i.e., setting

1)

5]
Ob':

(2.2-12)

The relationship between X, and o determined by Eq. (2.2-12) may be

written as

o = 2x“c/<1 +xC2) (2.2=13)

and is plotted in Figure (2.2). This gives the size of the stagnate core
in the plane of the minimum flow cross-~section as a function of the swirl

kinetic energy. When there is no swirl, there is no core and the axial
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Fig. 2.2 Core radius as a function of swirl for incompressible potential flow.
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Fig. 2.3 Volume flow as a function of swirl for incompressible potential flow.
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velocity is uniform across the total cross-section. In the other limit,
if all of the potential energy difference available for driving the flow is
converted into swirling kinetic energy, there would be no flow through the

cross-section and the core would completely fill the exhaust.

Figure (2.2) also includes a curve of the stagnate core size at the
chamber wall opposite to the exhaust. This can be obtained by noting that
both w and u are zero there and thus Eq. (2.2-10)would reduce to

xc(z =) =a (2.2-14)
this being the radius at which all of the available energy has been converted

to swirling kinetic energy.

The total flow through the exhaust is obtained by substituting Eq.
(2.2-13) into Eq. (2.2-11) to obtain

3/2 1/2

/ L+ x7) (2.2-15)

- 2 2
Q = (l-xC ) -
Equations (2.2-13) and (2.2-15) may be used to plot through flow as a

function of swirl. Such a plot is given in Figure (2.3).

With conditions at the exhaust now specified it should be possible
to build up a series of solutions of the form given by Eq. (2.2-2) to form
a complete solution that satisfies all the boundary conditions. If we ig-
nore the radius of curvature of the exhaust nozzle and specify our exhaust
constraint at z = 0, a possible solution appears to be
i © .
= e— -
¥ 5 néo Anr Jl(knr) sinh [kn(z ]
o mm mm ., mm (2.2-16)
tnkoPnt [ Gr) * Dyl o)l sin o)
where the kn's are determined by
Jl(knrw) =0 (2.2-17)
and the coefficients An's given by
- 0;rc«< rC(O) or r > r,
néoAnr Jl(knr) sinh (-knl) =._ﬁ z_rz -
L R c ;T >r>r (2.2-18)
2T | e— — "¢
2 -r 2(0)
Te c
The determination of the remaining coefficients is complicated by the exis-

tence of the stagnate core boundary, along which the solution must satisfy

18



Lax = [2p0p(1 - a?r ?/rx 2)11/2
r 3r r=rc(z) € ¢ (2.2-19)

and
W(rc,z) = m/2m (2.2-20)

These conditions together with the condition that u =-@/27Tpr ¢ at r = r
w w

lead to the following three sets of equations for the determination of the

B 's,D's and r :
™ c

m
mT mm . ommz _ m _ _
méoBm Tw [Il (k rw) + DmKl (E_rw)] sin 2 2L (z-2) (2.2-21)
mm mn . mMTZ
méoBm [Il (2 rc) + DmKl (E_rc)] sin £
+ néoAn Jl(knrc)51nh [kn (z -2)] =0 (2.2-22)
and
® l1d [rJ (ko] . _
néoAn[r ar 1 n sinh [kn(z )]

r=r
c

mmT mmT
+ $p | Ldrll; o)+ DmKl(E—r)]] sin (2XZ)
m=o m|{ r dr rer 2

c

1/2
= [208p (1 ~ a2re2/rC2)] (2.2-23)

The solution given in Eq. (2.2-16) is not particularly useful due to
the difficulty in determining all of the coefficients, but it can be used
to show that for a given mass flow through the container, the variation in
Y with swirl is primarily restricted to the neighborhood of L When o = O,
T, and the Dm coefficients are zero so that the solution is determined by
Eqs. (2.2-16), (2.2-17), (2.2-18) and (2.2-21). When a is finite there is
a change in higher numbered An's due to the introduction of rc(o) in
Eq. (2.2~18). This change will be most evident in the immediate neighbor-
hood of r.- The other change involves the Dm and Bm terms. Since Kl > ®
while J. and I, both -~ o as r + o, Eq. (2.2-22) and (2.2-23) suggests that

1 1
the Dm's should be small. Thus these terms will be small except near r = 0.
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In this inviscid, incompressible flow model the largest effect of the
swirl is to change the flow rate through the container for a given pressure
difference across the container as described in Fig. (2.3). The change in
the stream function pattern is primarily limited to the introduction of a

stagnate core around the axis when swirl is added.

2.3 Isentropic Model
For isentropic flow of a perfect gas, the density can be related to
the velocity through the energy equation. This relation may be written

in the following form -1

_ -1 2| y1
o/p = i1 +L=21 7 (2.3-1)
o L 2 2
a
where the subscript o denotes the stagnation value and a is the speed of
sound. Equation (2.3~1) can be used to eliminate p from Eq. (2.1-7) and
write it in terms of the component Mach numbers. After some manipulation,
the equation for the tangential component of vorticity can be written as,

(King, 1967),

“ . 2 2 v
(1 - w oY 2uw 3¢ + (1 - 32) ayY %_BW (L+—-) =0 (2.3-2)

The interesting thing to note about Eq. (2.3-2) is that the nature of
the equation, i.e., whether it is hyperbolic or elliptic, is unaffected by
the tangential Mach number, v/a. The nature of the equation is determined
by the coefficients of the highest order derivatives. Thus for axisymmetric
flow, we do not expect anything unique to occur when v/a = 1, but we can

R, . . 2 2 2
anticipate transonic choking to occur when (u” + w )/a” = 1.

Equation (2.3~2) is nonlinear and thus far more difficult to solve
than in the incompressible case. Even in the incompressible case, the
solution for the stream function pattern does not appear very useful. The
most useful information came from the exhaust constraint. Therefore for
this isentropic case no attempt will be made to solve for the complete flow;

only the exhaust constraint will be considered.

As long as u is neglected in the exhaust, Egqs. (2.1-2) to (2.1-4) 1lead
to constant values for both w and I'. The energy equation (or the compressible

Bernoulli Eq.) may be written as
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2 .2, 2 -1
- r y=1
J%fL Gi;i;ELE ) + (p/po) y =1 (2.3-3)
a
o

If the previous definition of a is generalized to

0L2 = Y-1 Fz
2 22 _ (P v=1/vy (2.3-4)
a r [l -~ (Fc/p) 1
and the axial velocity is normalized in a similar manner
2
v = XL e (2.3-5)
a_ [1- Ce/p) ]
then Eq. (2.3-3) may be written simply as
w2+t (2.3-6)

2 . . .
with x = r/re. Note that o~ is still defined as the fraction of available
energy invested ‘in the swirl and reduces to the previous definition,

Eq. (2.2-8), as P, * Pyr

The relationship between w and T, is obtained by evaluating Eq. (2.3-6)

at the core

2
2_ 40 /Xc2 (2.3-7)
The mass flow through the exhaust is given by
Te
m = 27mw J prdr (2.3-8)
T
¢

After considerable algebra, with the aid of Eqs. (2.3-1), (2.3-4), (2.3-5),

and (2.3-7), this last equation can be written as

g 12 - 2(+11)
m/ﬂpoaore2(;:1) (1- /p) Ty N
(2.3-9)
2 1/2 Z/Y—l 1 - X 2/(12 X 27 l/(Y"l)
= - C
[1 (a/xc) ] (a/xc) D7 +1 - ;%— 2xdx

X, -(pO/pC) -1
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To make the flow unique it is still necessary to fix the core radius.
The most satisfying way to do this is to choose X, to maximize m when

the other parameters are specified as was done in the incompressible case.

Equation (2.3-9) still yields the incompressible expression, Eq.
(2.2-11), as P Pye The other limiting case of P, = 0 was treated by

Mager (1961). For Mager's case the integral in Eq. (2.3-9) reduces to

1 x 2 1/y-1
I = a- %) 2xdx (2.3-10)
X
Xe

+
which can be integrated analytically for vy = E:% with n an integer. The

extremum condition on m with respect to X, yields

. 2, 2
Loh _at/mg” 2-1), 131 _ (2.3~11)
il Bxc 1- 2 X, L ox,

xC

When I is differentiated with respect to X, and then integrated by parts

with respect to x, it is possible to show that

x 2 1/y-1
1931 2 2 (1-
13 .2 2 (- "c) I°> (2.3-12)
c c c

Equations (2.3-11) and (2.3-12) allow an expression for o as a function
x, to be obtained, after some algebra, i.e.
1/2
a = x - L
c - s _
v, - 21T (2.3-13)
y-1 f___C .
/ I

This relationship between X, and o is plotted in Fig. (2.4), for vy = 1.4
as taken from the results of Mager. We can include on Fig. (2.4) the core
size at the chamber wall opposite to the exhaust. From Eq. (2.3-7) with

w = 0 it may be seen that we still have

X, (z =2) =« (2.3-14)
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Fig. 2.4 Core radius as a function of swirl

for isentropic flow with vy = 1.4
exhausting to a vacuum. (llager 1961)

When Eq. (2.3-13) is substituted into Eq. (2.3-9) to obtain the mass

flow, it may be shown that

1 Liy-1)
i - [1 - 3y 2(1_xcz)l/(y—l)}
TO a T 2[—3— H - L 1/2
oo e “y-1 lB—Y N 2(1-x.4) 1/ {yv-1) ]
e
I

(2.3-15)

Equations (2.3-15) and (2.3-13) permit the wass flo— to be plotted as a function
of swirl. Figure (2.5) is such a plot for vy = 1l.4.

1.0
0.8L
i 0.6F
“nax 0.4|
Fig. 2.5 Mass flow as
a function of swirl for 0-2_
isentropic flow exhausting
to a vacuum with y = 1.4
(Mager, 1961). 0

0.2 0.4 0.6 0.8 1.0
1/2

y-1
e =15 1 I'/ r a
e“o
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Both Figs. (2.4) and (2.5) are quite similar to Figs. (2.2) and (2.3).
The biggest difference appears to be that the mass flow in the compressible
case at the same value of o is always less than it is in the incompressible,
while the core radius is smaller than in the incompressible case. The
similarity of these two limiting cases leads one to guess that results for
intermediate values of P, will lie between these two cases. Mass flow as a
function of swirl for P, = 0 and other values of Y have been computed by
Glick and Kilgore (1967). As y decreases, the mass flow for a given value

of o is reduced.

Binnie (1949) determined the critical value of w as a function of
swirl for general values of pc/pO for y = 1.4 and v = 2. However, he
worked out the problem for a given core size, X, and assumed that Bxc/az =0
at the throat to obtain his critical conditions. His results for P, = 0
are valid since p(xc) = 0 in this case and the coefficient of 9x./9z in his
critical equation would vanish anyway. In this limiting case, the results

of Binnie and the later, more complete results of Mager are in agreement.

It is interesting to note that the axial Mach number, Ma’ across this
choked cross-section for swirling flow is not equal to one. The centrifugal
force of the swirling flow forces a radial pressure gradient which for
isentropic flow results in a radial temperature gradient. Thus, even though
the axial velocity is constant, a gradient in sound speed produces a radial
gradient in axial Mach numbexr. For P, = o, Ma has a value less than 1 at
r and increases as r is decreased, reaching «* at r = r.. It is reassuring
that the proper limit of Ma = 1 is reached as a > o. From Egqs. (2.3-10)
and (2.3-13) it may be seen that as a« > o, I - 1, and a/xc+ [2/(y + 1)]1/2,
so that w > [C(y - 1)/ (y + l)]l/2 and
1/2 a
M= (=) w21

B @ (2.3-16)

The preceding case of choked axial flow through a minimum cross-section
is quite different from the other limiting case when the radial flow chokes
at the minimum annular area. This can be seen by considering an ideal two-
dimensional, isentropic vortex with

pur = const = _%i (2.3-17)
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vr = const =T (2.3-18)

l%l (u2 + v2) + a2 const = a02 (2.3-19)
and

p/pY = const

Po/Po’ (2.3-20)

After some algebra these equations can be manipulated to give

Y+l
&y [y 2 POV
2ﬂr£8ao T 2 a 2r2 (2.3-21)
o]
1+ iy 2
2 r

The right-hand-side of Eq. (2.3-21) must be a maximum when r is a minimum
and this maximum occurs when Mr = 1 regardless of the energy invested in

swirl. Thus, for choked radial flow

a’‘r (2.3-22)

When Eq. (2.3-22) is compared with Fig. (2.5) in Fig. (2.6) it can be
seen that m does not decrease as fast (as swirl is increased in this case of

radial choking as it does in the previous case of axial choking.

In summary, the inviscid model appears to be useful in yielding an
approximate relationship between the pressure drop across a vortex chamber
and the flow through it. This relationship will be compared with experiment
in Chapter VII. This model is not very useful in determining the streamline

pattern through the chamber.

1.0r<
0.8 t
Fig. 2.6 Comparison of \\
reduction in choked mass 0.6 N
flow with swirl between N
radial choking (---) i. 0.3 AN
and axial choking m AN
max \
. 0.2 N
\
A
\\\
0 S~

r
o e
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I1T. INCOMPRESSIBLE, AXISYMMETRIC, LAMINAR FLOW
3.1 Governing Parameters in the Navier-Stokes Equations

For an incompressible fluid with constant viscosity, Egs. (1.3-1) and

(1.3-2) reduce to

divg=0 (3.1-1)
->
%% +-% grad p = vdiv grad q (3.1-2)

when the volume force, %, is zero. These two equations form a complete set

with the energy equation decoupled.

The pressure can be eliminated from the system of equations by using

Eq. (1.3-5), the curl of the momentum equation, to replace Eq. (3.1-2)

>
]—;% - - VE = v V2 (3.1-3)

For axisymmetric flow, the vorticity may be written in terms of the cir-
culation, I', and stream function, ¥, defined in Egs. (2.1-5) and (2.1-6)

coidy 13y 1 02,7 (3.1-4)
r or "z r dz T oY 0

with the operator V2 defined as

. 32 3,19
2 = ° - (= = _
v 3z2 +tr or (r Br) (3.1-5)

Equation (3.1-3) could now be written as 3 scalar equations in terms of the
two variables T and ¥. However, it can be shown that the radial and axial
components of Eq. (3.1-3) contain the same information. In fact, they

may conveniently be replaced with the tangential momentum equation which for
axisymmetric flow is independent of the pressure. Therefore, we may choose
as our system of equations the tangential components of the momentum and the

vorticity equations. These two equations may be written in terms of T and Y as

T _ 1 ¥ 3L _ 3¥ By _ G -
93t pr ‘9z dr  or Bz) = v ¥ (3.1-6)
and
D ooy 13¥3 1 oy . 1 3Y VA
ot ¥ p oz Br(r vy + pr or oz
vZy 3y | 20T 3T _ oy
+ 2oz F Tl 9z v V1Y (3.1-7)

The dimensionless parameters governing the flow may be determined by
normalizing the variables in Eqs. (3.1-6) and (3.1-7) with respect to their

characteristic values. The following dimensionless variables are introduced:
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2ny
m

- L =2 = (& =t -
Y= > I‘—ro, E=7, 1 (r), T = (3.1-8)

o c
where m, Po, 2,.r0, and tc are characteristic values of mass flow, circula-
tion, axial length, radius, and time, respectively. It is important to
remember that the dimensionless parameters to be obtained when Eqs. (3.1-8) are
introduced into Egs. (3.1-6) and (3.1-7) are the most appropriate governing
parameters only when the normalized variables are of order one. The equations
could, in fact, be written so that no parameters appeared by taking
2
. r

£ = L m = 2ﬂpvr°, Po = v, and tc = ;2 (3.1-9)
but this only hides the governing parameters in the boundary conditions, since
in this case, the order of the dimensionless variables, y, ', & and 1 are all

set by the boundary conditioms.

Equations (3.1-6) and (3.1-7) may be written in terms of the variables
defined in Eq. (3.1-8) as

130 3y ar 3y ar _ 1g. -
S5t 2 scant 2 aE—Ni-I" (3.1-10)
and
§2 or? _ _ 1 3w 2y 2GOY) 29 3%, 1.,
.H B_E_: =—ﬁ_3—1'_+ 2n-E-5-n———2 an—€—+ﬁ£\ P (3.1-11)
with the dimensionless operator §» defined as
~ 2 2
i: = 2g2 - 3__ LQZ.B_ -
> o<V 4n an2 &9 3E2 (3.1-12)

and the dimensionless parameters N,%/ , and S defined as:

1= %ﬁag—zg , the reciprocal of a reduced frequency (3.1-13)
o
m
N = Jmove 2 Reynolds number based on thru flow (3.1-14)

27mpT . . s
S = ——EEQEQ » @ swirl parameter measuring the interaction of the

circulation and the stream function (3.1-15)
The general problem in this chapter is governed by 4 parameters, includ-
ing the ratio of characteristic lengths appearing in the operator in Eq.
(3.1-12). The parameter most unique to our vortex problems is the swirl
parameter. The swirl parameter could be referred to as the reciprocal of a
Rossby number. The Rossby number is usually defined as the ratio of the
convective acceleration to the Coriolis force present when the equations

are written in & rotating frame of reference (Greenspan, 1968). There
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is no advantage to using the rotating coordinate system when the swirl
distribution departs markedly from that of uniform rotation. Herein the term
Rossby number will be reserved for these cases in which a uniform rotation

is separated out from the general swirl distribution,

Before looking at particular solutions to Egqs. (3.1-10) and (3.1-11)
let us look at the reduced equations in different limits of the governing
parameters.

If N and?% > = , then Eqs. (3.1-10) and (3.1-11) reduce to
dy 3 3y ar

n R (3.1-16)
and 1
2 o2 3L W) }
g ol 3y —'n’ oY LY
2 - - - —X 3.1-1
n 3 - M 2 3 BE (3.1-17)
Equation (3.1-16) is satisfied if [’ is constant along streamlines, i.e,
* =T () (3.1-18)
and Eq. (3.1-17) is satisfied if
1. s2 dr?
e B F(¥) on dy (3.1-19)

The function F(y) may be related to the derivative of the total pressure with
respect to the stream function (Batchelor, 1967). After some manipulation

it can be shown that

Po
F(p) = (2“‘31‘02 2 d(p)

m dy

(3.1-20)

When the total pressure and circulation are assumed comstant, Eq. (3.1~19)
reduces to the normalized form of Eq. (2.2-1)

2 n2
fi%g =0
2g

which was discussed in Section 2.2. The swirl parameter only affects the

32y Io
4n_3—r—]2-+(9,) (3.1-21)

equation when the circulation distribution varies from streamline to
streamline. However, the swirl can still influence the boundary conditions

as seen in Chapter II.

When S =+ 0, Egs. (3.1-10) and (3.1-11) decouple and Eq. (3.1-10)
becomes a linear equation to solve for I’ after the stream function has been
determined. An expansion in powers of S may be used to determine the initial
influence of swirl on the stream function, It is possible to consider

perturbations about any of the known solutions of the axially symmetric
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Navier—Stokes equations. The problems most nearly related to confined flows
have been considered by Gortler (1954), Talbot (1954), Newman (1559),
Lewellen (1965), Fiebig (1966), and Pedley (1969).

The most interesting limit is that of §* «. If N,%, and r,/% remain

finite, then from Eq. (3.1-11) it follows that

T =rMm,1) (3.1-22)
and from Eq. (3.1-10) this leads to the further restriction that
¥ = do(n,T) + EY1(n,1) (3.1-23)

That is, the radial and tangential velocities are independent of z and the
axial velocity varies at most linearly with z. TFor the case in which the flow
departs only slightly from uniform rotation, i.e. I* = n + 0(S2) this two-
dimensional nature of the flow is known as the Taylor (1929) - Proudman (1916)
Theorem. The 2-D nature of the flow holds as long as I" # constant. If

I* = constant, then Eq. (3.1-11) for ¢ is independent of S and the flow need
not be 2-D.

Often in problems with large swirl the boundary conditions do not permit
the radial and tangential velocities to be independent of the axial coordinate.
The flow must then accommodate in regions in which one or more of the other
parameters do not remain finite. For example, in steady flow if (ro/l)2 >

as S- o , then Eqs. (3.1-10) and (3.1-11) reduce to

By 3, 3 1 (xoy® 3% -
2 3¢ n 2 a0 BE N ( 2) 3E2 (3.1-24)
and

2 (282 pp2 ap 8 1 32 3y 33 1 o2 3"

(ro) n PE 2n Y an(n a—gg{) -2 o ﬁ%*— N (2) 'é—gg:' (3.1-25)
To keep all the remaining terms in the equations of order one it is necessary
to set

r 2
G°) = 0(s2) = 0(M) (3.1-26)
Recalling that N = m/2mpvl, we see this requires that
i = 0(2mpvry2/8e) (3.1-27)
and since § = Zﬂproro/ﬁ,
2 2
Toy = ook -
. & o(vro) (3.1-28)
Therefore
2 _ v 1/2
r, = Olr ! (3.1-29)
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and
fi = 0[2mpr (VI,)1/2] (3.1-30)
From the preceding argument, we may conclude that when 82 >> 1, all
axial adjustments in T imposed by the boundary conditions will occur in thin
boundary layers that have a thickness of the order of one over the square
root of a tangential Reynolds number, [\)/I‘]l/2 this is sometimes referred
to as a Taylor number (Greenspan, 1968). We also obtain the important result
that these thin adjustment layers will have a secondary mass flow associated

with them as given in Eq. (3.1-30).

Most of this review will be limited to steady flow, but the time depend-
ence has been retained to this point to give an opportunity for a brief discus-
sion of inertial waves. The possibility for an incompressible swirling fluid
to support waves is the consequence of the restoring force supplied by any
perturbation of the equilibrium between pressure gradient and centrifugal
force in a stable swirling fluid. When S is large and ro/l of order one the

radial component of the momentum equation yields

2 _ ol (3.1-31)
regardless of the order N. If a fluid element is perturbed from its equilibri-
um position it tends to conserve its circulation. The forces on the element
in its perturbed position consist of the pressure gradient that balances
the centrifugal force at that position and the centrifugal force determined

by the circulation at its equilibrium position, i.e.,

=L (7.2 _r1.2
AF = r23(11 1“2 ) (3.1-32)

where the subscript 1 refers to the equilibrium position of the element and
subscript 2 to its perturbed position. As long as dI'/dr > 0 (in Chapter IV
it can be seen that this is a necessary condition for a stable swirling flow),
Eq. (3.1-32) provides a restoring force for the fluid element. If 1, > T,
then T, > Pl and AF < 0, tending to force the fluid element to decrease its

radius back to r;.

In order to exhibit the inertial waves mathematically, consider the limit
of N > », and let? and S be inversely related as S > ». Also let
; 1
= To(m + 3 8(n,8,1) (3.1-33)

Equation (3.1-10) and (3.1-11) reduce to
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13 9
Fsa - U gp =0 | (3.1-34)

28T 8g _ _ 1 39y
n o BE = "qs 3T (3.1—35)

Cross differentiation of these last equations leads to

1 2%y, 4Tlo 92y _
72827 32 T Ty 5g2 = O (3.1-36)
From the definition of % and S, Egs. (3.1-13) and (3.1-15), we see
that
2
202 - (lao t -
1787 = C® (3.1-37)

This can be set equal to one with no further lossin generality. Let us
also 1limit ourselves to the main body of flow outside any shear layers by

assuming ro = 2. Then Eq. (3.1-36) reduces to
32 3%y , 32y 4T TR 32y
372 [4n nZ +'§gz] + n 2EZ = 0 (3.1-38)
The time dependence of y may be Fourier analysed since this is a linear
equation. For simplicity we will consider only a sinusoidal time variation,

i.e. assume

¥ = P(&,n) sin At (3.1-39)
Then
27 I 27,
4ng—n%+[1—4—n§zﬂ]%§j=o (3.1-40)

Equation (3.1-40) is elliptic or hyperbolic depending upon whether ) is
I
> or < 2[—9;Q~]1/2. When the frequency is sufficiently low for the equation

to be hyperbolic, characteristic surfaces, along which disturbances propagate,
will exist in the flow. The waves are dispersive with the slope of these

characteristic surfaces given by

*
Lot [A-o-a _ 32172 (3.1-41)

In the case of nearly uniform rotation, i.e., when I* = n these surfaces are

o
conical. Figure 3.1 from Greenspan (1968) shows these wave propagation patterns
and demonstrates that the slope of the characteristics has the frequency
dependence predicted by Eq. (3.1-41). Note that as A > 0, the slope of the
characteristics approach « and the characteristic cones become cylinders.

This is another demonstration of the flow tending toward two-dimensionality.

In steady flow these cylindrical surfaces which permit the flow to be 2-D,
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Fig. 3.1 (a) Waves producgd by an oscillating disk with A = 1.75. The half
apex angle is 59 and the theoretical value is 56 . (b) The apex
angle increases for a larger value of A (Greenspan, 1968).
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when the boundary conditions are not, are known as Taylor columns.
3.2 Similarity Solutioms

The most common method of obtaining exact solutions to the Navier-Stokes
equations is by using a so-called similarity transformation. That is, the
variables are transformed to functions of a single elementary function of the
coordinates. In this form the unknown variables satisfy ordinary differential
equations. The solution of such equations (numerically, if necessary) is
considerably simpler than the solution of the original partial-differential

equations.

The similarity constraint imposes a strong restriction on the flow. In
general, one cannot expect the boundary conditions associated with the
complete flow pattern in any container to conform to a similarity solution.
At best, one can expect the similarity solution to hold in certain regions of
the flow. But often even this is not the case. The most useful purpose
served by these solutions is in providing exact solutions which demonstrate

the different type flow patterns to be expected.
A. Possible Similarity Transformations for Steady Flow

The type of similarity transformation attempted is in general related
to the boundary conditions of the prarticular problem considered. The
present geometry of confined vortices suggests the use of the following

rather general similarity transformation:

I = g(y) 6(&)
v = £(y) ¢(&) (3.2-1)
y = n AE)

In terms of the variables of Eqs. (3.2-1), the tangential momentum equa-

tion, Eq. (3.1-10), becomes

9" . 2yg" r. /2)2 . g" 6' , A'
A'2 AV
gy A2 + g'yz 1=0 (3.2-2)

Since the terms of Eq. (3.2-2) are not in general separable into terms
which are functions only of one or the other of the variables, y or £, it is
necessary to find special values of the functions which pemit the equations
to be only a function of one variable. If Eq. (3.2-2) is to be a function

of y only, then from the first and third terms either ¢' = const. or g" = 0.
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Considering ¢ = £ first, the second term, for a nonzero f', requires 6 = En,
but this is inconsistent with the fourth and fifth terms unless n = 0, i.e.,
6 = constant, or n = 1 and A" = 0. Then from the last two terms in the equa-
tion either A' = 0 or A = g2, On the other hand, if g" = 0 then Eq. (3.2-2)
is an ordinary differential equation with respect to £ providing f" and ¢'

equal zero.

Thus the following possibilities are found after considering only

Eq. (3.1-10):

(i) =1, ¢=¢, A=1 (3.2-3)
(ii) e=1, ¢=1¢, A=¢g2 (3.2-4)
(iii) e=¢, ¢=¢&, AL=1 (3.2-5)
(iv) g =1y, f =y, A=1 (3.2-6)

All four of these forms are also found to be consistent with Eq. (3.1-11).
It is also found that a combination of (i) and (iii) of the form

(v) F=Te) +ET1(m; ¥ =)+ & ¥;(n) (3.2-7)
reduces the equations of motion to a set of four ordinary differential

equations,

The above similarity transformations which permit exact solutions are
quite restrictive. However, if boundary-layer assumptions are used, a more
general class of transformations is available. Considering an axial '"'boundary
layer," i.e., a thin region within which the derivatives of the variables with
respect to z are very large, the ratio of characteristic lengths, r /%, will
be very large. Neglecting order (Q/ro)z, i.e., order of the boundary-layer
thickness squared over the characteristic radius squared, Egqs. (3.1-10) and

(3.1-11) reduce to Egs. (3.1-24) and (3.1-25).

Egs. (3.1-24) and (3.1-25) can be reduced to ordinary differential

equations by any member of the following class of transformations

*(n,£) = g(y) n°
+1
Y(n,g) = £(y) ﬁﬂf" (3.2-8)
-1
y =g nﬂz_

When q = 1, this boundary-layer transformation is the same transforma-
tion as given by (iv) for the full equations. Also, when q = 0, the form in

Eq. (3.2-8) is equivalent to that of type (ii). The special members of the
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transformation in Eq. (3.2-8) represented by q = 1 and q = 0 thus reduce the

full equations while any q suffices to reduce the boundary-layer equationms.

If a boundary layer is considered in the opposite sense, i.e., as
a region of thin radial extent about the axis within which the derivatives
with respect to radius are very large, then r°/£ will be small., The equations

of motion neglecting 0(f0/2)2 then become

dy A 3y A 2n 2%r

QE on an 3  ~ N an? (3.2-9)
2p O _ 402 2 5 3% 3”‘1' -
821 5 = 4n [ ——%- an ag 2t (2 g5+ 5] (3.2-10)

Equations (3.2-9) and (3.2-10) are reducible to ordinary differential

equations by the transformation

I =g(y) £
v = £(y) & (3.2-11)
y = n 2@

It can again be noted that of the class of transformations represented
by Eq. (3.2-11) the two, m = 1 and m = 0, represent transformations for the
full equations corresponding respectively to type (iii) and (ii). Type (1)
also, of course, reduces Eqs. (3.2-9) and (3.2-10) but is not included in Eq.
(3.2-11). Transformation (i) is the special case for which the right and left-

hand sides of Eq. (3.2-10) are individually equal to zero.

If the boundary layer of thin radial extent occurs away from the axis
ait some radius which is large compared to the boundary-layer thickness, then
the radial curvature terms in Eq. (3.2-10) and (3.2-9) can be neglected.
by setting
n=1+ 6x (3.2-12)
Egqs. (3.2-9) and (3.2-10) become to 0(8)

ag 9x ~ 9x 9f N6 ax2 (3:2-13)
2 O° _ 4 39 a31p oy 3% 2 8%y )
8°T' 3¢ = 5305¢ 5x% ~ ox ot ox2 * N8 V) (3.2-14)

Equations (3.2-13) and (3.2-14) can be reduced to ordinary differential

equations by the transformation
5p-3
g(y) &

£(y) £P (3.2-15)

I*(x,£)
$(x,8)

35



-1
y =x &b

The similarity transformations given in this section, of course, do not
exhaust all the possibilities. Some special forms different from Eq. (3.2-1)

are possible. A couple of these will be included in the next sectionm.
B. Existing Solutioms

Transformation (i) yields a flow with the tangential and radial velocities
independent of the axial coordinate. It has been studied most completely by
Donaldson and Sullivan (1960). Since the tangential velocity is independent
of the axial coordinate in these flows, by Eq. (3.1-11), the stream function
is independent of the circulation. It should perhaps be emphasized that the
solutions for the stream function found in this class are obtainable in flows
without any swirl. The same equations and boundary conditions for the stream
function studied by Donaldson and Sullivan was earlier investigated by Yuan
and Finkelstein (1956) in the study of laminar flow in a porous tube. The
corresponding solutions for the circulation represent those tangential velocity
distributions which can be superimposed upon the basic flow without in any
way changing the stream function. This complete decoupling of the stream
function from the circulation distribution is seldom achieved in real flows
except in the limit of small swirl. However, a great deal can be learned about
the circulation distribution by investigating how it varies for different

stream function distributions of this class.

When transformation (i) is used Egs. (3.1-10) and (3.1-11) reduce to
2ng" + Nfg' = 0 (3.2-16)
and

WM(EE'™ - £'£f") + 4£'" + 2nf"" = O (3.2-17)

The simplest solution of the last equation is f = constant, corresponding
to a line sink along the axis. For this case it is appropriate to normalize
the mass flow so that £ = 1 and Eq. (3.2-16) integrates to

1-N
g=c,n Z+c, (3.2-18)
This solution was first discussed by Hamel (1916) and may be used to look
at the swirl distribution that could occur between two concentric porous
cylinders when one or both of them are rotating and a mass flow passes
radially through the cylinders. 1If the larger cylinder of radius r, is

assumed ta rotate with an angular velocity g, and the smaller cylinder of
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of radius T, is stationary, then in dimensional terms

-N+2 ~N+2
v =20 "0 [r - ry 1
r ~N+2 =-N+2

ro - ri

(3.2-19)

where the radial Reynolds number N is based on the mass flow per unit length

passing through the cylinders. Equation (3.2-19) is plotted in Fig. 3.2.
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N=1
N=1
0 1 1 I 1 }
Ei 0.2 0.4 0.6 0.8 1.0
Lo r/r,

Fig. 3.2 Tangential velocity profile inside a rotating porous cylinder
for various values of radial thru flow.

There is a boundary layer formed omn the outer cylinder when N < O cor-
responding to a radial mass flow passing from the inner cylinder out. A
vortex type flow occurs when N > 2 corresponding to an inward mass flow. When
N >> 1 there is a potential vortex between the cylinders with a thin boundary

layer on the inmer cylinder.

The next solution of Eq. (3.2-17) to be considered is that of f = np
corresponding to flow with a sink located at z = +« and z = -, The vortex
distributions possible with such sink flows were discussed by Burgers (1948)
and Rott (1958). 1If the boundary conditions that v = 0 at r = 0 and the cir-

culation is a given finite value T, at large radii, then Eq. (3.2-16) may be
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integrated for this case to give
N

-5n
r = Fo (L-e“) (3.2-20)
Again, an inflow corresponding to N > 0 is necessary to obtain a vortex type
flow. One of the most basic features of real vortex flows is evident from this
solution. Namely, that at large radii the vortex tends to have a constant
circulation since the exponential term can be ignored there, while near the

axis the exponential term may be expanded in a series to show that

N
F"Poin as n -0 (3.2-21)
corresponding to solid-body rotation. The maximum velocities ian the vortex
occur in the transition region between potential circulation and uniform
rotation. The radius at which this occurs is the natural characteristic
length for this problem. This corresponds to setting N = 1. It is also more

convenient to work with a velocity gradient, a, defined so that u = -ar,

w = 2az, then with the mass flow which varies with r2 , 1.e.

2
N = 3—3-0 =1 (3.2-22)
ro = (3172 (3.2-23)

The axial and tangential velocity distributions for this case are given in

Fig. 3.3 as the one cell solution.
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Fig. 3.3 Velocity distributions (a) Top: axial velocity.
(b) Bottom: tangential velocity. (Sullivan, 1959)
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Donaldson and Sullivan (1960) have obtained the swirl distribution as-
sociated with a wide variety of stream function distributions-obtained by solving
Eq. (3.2-17) numerically. The solutions for f exhibit a varying number of
flow reversals which may be described as nested cells. However, one should not
attribute these multiple-celled solutions as being caused by the vortex motion,
since Eq. (3.2-17) is completely decoupled from the swirl. An anmalytic solution
of this class was given by Sullivan (1959) corresponding to a two-celled
stream function. One can readily check that

N

SN
fen-fa-e 2 (3.2-2)

satisfies Eq. (3.2-17). The axial velocity given by this solution is plotted
in Fig. 3.3 as is the tangential velocity obtained by substituting Eq.
(3.2-24) into Eq. (3.2-16) and integrating. The velocities obtained for Eq.

(3.2-20) are also included for comparison.

When transformation (ii) is used the stream function is coupled to the

circulation. The equations for this case may be written as

2
2}78" + (%O) (3gl + 2y2g") + Nfg' = 0 (3.2-25)

and

' 2
_SZ%% = ff'" + 3f'f" +_i‘]2_ (yfllll + 2fll|) +%(§0) [nyf"' +

2 2
6£'E" + fE£" - 3f'2] +% (520) {[4y + 2(%0) y21 £ +

[14y + 12(§°>2y21f"' + [4 + %(f")zy]f" - 3<§°)zf'} (3.2-26)
Long (1961) has considered the problem analogous to Burgers-Rott for

this transformation. Actually the solutions presented by Long belong to the
family of Eq. (3.2-11) since after obtaining ordinary differential equations
for the full equations, they were solved using the boundary-layer approximation
[(ro/R.)2 + 0]. Long's flow problem can perhaps be best described as a swirling
jet exhausting into an unbounded fluid which has constant circulation. In the
limit of zero circulation it reduces to Schlichting's jet problem (Schlichting,
1968). Long's solutions demonstrate that as the ratio of the angular momentum
in the jet to the axial momentum in the jet is increased the axial velocity

on the axis of the jet is retarded. The parameter used by Long is
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M = —1%112 J (B+ 2) r dr (3.2-27)
o Jg P

He found that two solutions could exist for each value of M > 3.65 and that

no solution exists for M < 3.65. 1In each pair of solutions one has a positive
axial velocity on the axis and the other a negative axial velocity. The
solution with a negative axial velocity corresponds to the jet with the higher

ratio of angular momentum to axial momentum.,

Equations (3.2-25 and 3.2-26) also were used by Gol'dshtik (1960) to con-
sider the flow produced by a potential vortex over an infinite stationary wall.
He was able to show that no solution exists for this problem with a tangential
Reynolds number, SN > 8. This points out the fact that although a particular
transformation may reduce the equations of motion to ordinary differential
equations and seemingly physical boundary conditions which do not destroy the
similarity are applied, the resulting system of equations and boundary condi-
tions may not permit a real solution. The small Reynolds number solution was

recently computed, numerically by Kidd and Farris (1968).

No solutions appear in the literature for transformation (ii). The
transformation which has received the most attention in the literature is (iv).
This was first used by Von Karman (1921) and Cochran (1934) to find the flow
due to an infinite rotating disk in an unbounded fluid at rest. It was later
used by Bodewadt (1940) to solve the opposite problem of a uniformly rotating

fluid over and infinite stationary wall,

For transformation (iv), Egqs. (3.1-10 and 3.1-11) reduce to

-2
8" - 2N (%0) [46' - ¢'8] = 0 (3.2-28)
and
2 2
2% " - _ e 1 r, o _
S (ro) 80 90" + oN (2 ) ¢ (3.2-29)

As demonstrated in Section 3.1, it is possible to take the characteristic
length ratio as
% v
= = (@ y1/2
r Ty

o (3.2-30)

1 .
and set 82(2/1:0)2 =X (ro/ﬁ)2 = 1 with no loss in generality. The solution
then depends only on the boundary conditions. It also is convenient to integrate

Eq. (3.2-29) orce formally so that the two equations now reduce to
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8" - 2¢8' + 2¢'6 =0 (3.2-31)
"' - 249" + ¢'2 - 82 = const. (3.2-32)

Von Karmén's problem of a rotating disk may be solved by numerically
integrating Eqs. (3.2-31 and 3.2-32) with the boundary conditions
$(0) = ¢'(0) = ¢'(=») =0
8(~) = 0, 0(0) =1

The velocity distributions obtained in this manner are plotted in dimensional

(3.2-33)

terms in Fig. 3.4.
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Fig. 3.4 Velocity distribution near a disk
rotating in a fluid at rest.
Bodewadt (1960) considered the opposite problem of a uniformly rotating
flow over a stationary disk. The boundary conditions for this problem are
$(0) = ¢"(0) = o' (=) =0
8(0) = 0, (=) =1

The numerical solutions obtained with these conditions are quite different

(3.2-34)

from the preceding solutions. The velocity distributions are plotted in Fig. 3.5.

The oscillations appearing in the Bddewadt profiles have tempted several
authors to discount this solution, but as seen in Section 1.2 the oscillations

rest on firm physical ground.

The variety of flows which can possibly be represented by one of the
transformations is amply demonstrated by the number of flows considered with
transformation (iv) by varying the compatible boundary conditions. Batchelor
(1951) not only considered the family of solutions in which the ratio of the
fluid rotation to the disk rotation varies from -« to +~, but also considered
the two-parameter family of solutions which describes the flow between two

parallel infinite disks which are rotating about the same axis with different
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Fig. 3.5 Rotation near a solid wall, after Bddewadt. (a) Vector representation
of the horizontal velocity component. (b) Velocity components as a
function of =z

angular velocities. This later problem was also discussed by Stewartson (1953).
The solutions for some of the flows discussed by Batchelor and Stewartson were
obtained numerically by Rogers and Lance (1960, 1962), and by Pearson (1965).
Stagnation flow against a rotating disk was studied by Hannah (1952) by includ-
ing a source on the axis of rotation at infinity. These flows can be given a
further degree of freedom by permitting sucking or blowing through the disk
(Stuart, 1954 and Nanda, 1961). An analogous variety of boundary conditions
could be combined with the other transformations resulting in an enormous

number of possible solutions, most of which would be of restricted interest.

These exact solutions (of the Navier-Stokes equations) obtained using
transformation (iv) all exhibit a boundary-layer type behavior when the tan-

gential Reynolds number is large. This family of boundary-layer solutions can
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be greatly expanded when the less strenuous transformation of boundary-layer
similarity as given in Eq. (3.2-8) is used. The boundary-layer equations can
then be written as ( with B = 2q - 1).

g" -% (3+8) fg' + (B + 1) £'g = 0 (3.2-35)

—gm +% (3 +8) ££" — BE'2 4g2 = g2(w) — BE'2(w) (3.2-36)

These last equations reduce to Egs. (3.2-31) and (3.2-32) when B = 1l with g = ©
and £ = ¢. They were integrated numerically by King and Lewellen (1964) for
values of B between -1 and +1 and boundary conditions which correspond to rotating
flow over a stationary, solid wall, i.e.
£(0) = £'(0) = f'(») = O
g(0) =0, g(=) =1

It was found, as shown in Fig. 3.6, that the oscillations exhibited in the

(3.2-37)

Bodewadt solution for B = 1 increased in magnitude and wavelength as B decreased;

-1

no solution exists for an external potential flow, 8

20| [ I D e T T

= ,[Yeo11/2
y z ’\)1‘]

Fig. 3.6 The dimensionless tangential boundary-layer velocity distributions
of the terminal similarity solutions for a fluid rotating as V = Cr
over a statiomary disk. (King and Lewellen, 1964).

B

Some properties of the solution can be seen by integrating Eq. (3.2-36)
twice, formally. This leads to

£2(0) = ;i 3 f dy f {3 (L+B) £'2 + 2 (g2(=») - g2)] dy (3.2-38)
[o]

y
Since the right hand side of this equation must be positive for a real solution,

it is clear that g must exceed g(®) at some points within the boundary layer.
For the case of rotating flow over a stationary wall this can only happen if
the tangential velocity profile has some type of overshoot which in turn implies

an oscillation.
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An asymptotic expansion of the equations for y - = can be used to show
that £(«) > 0. This corresponds to flow out of the boundary layer. These
solutions thus correspond to a "terminal" similarity. The boundary layer
began with an infinite reservoir of flow which is steadily expelled as the

radius decreases and approaches zero as r + 0.

With the terminal nature of the boundary layer in mind the oscillations
in the velocity profiles may be explained in the following way. (King and
Lewellen 1964). The radial inflow, induced by the retardation of the tangential
velocity in the neighborhood of the wall, tends to conserve the angular
momentum of the flow and thus to increase the tangential velocity with decreas-
ing radius. For an overshoot, radial convection of angular momentum in the
boundary layer must be strong enough to more than balance the dissipation of
angular momentum caused by the wall shear. This inward radial convection of
surplus angular momentum is possible as long as the distribution of circulation
in the outer flow increases with increasing r. However, a local overshoot in
the tangential velocity increases the centrifugal force locally which then
tends to induce a radial outflow. This radial outflow convects an angular
momentum defect to force an undershoot in the tangential velocity, and the
whole process is repeated to yield the oscillatory approach to infinity

exhibited by the solutionm,

The requirement of the infinite reservoir at infinite radius leads to the
question of whether a terminal similarity solution is ever valid. It can
only be valid if the boundary-layer flow can forget about its history, since
the initjal conditions at large radius can never be exactly fulfilled, and
be controlled by local conditions. A laser-Doppler velocimeter has been used
by Bien and Penner (1970) to show that the BVdewadt terminal similarity solution
is found near the center of a stationary disk in a rotating flow. The flow
field investigated was that between a rotating disk and a stationary disk. The
comparison between theory and experiment is shown in Fig. 3.7. A profile similar
to von Kirmin's occurs near the rotating disk and the B8dewadt profile of
Fig. 3.5 mnear the stationary disk. The matching condition between these two
determines the core flow as will be discussed in Section 3.5. Numerical
integrations of the boundary-layer equations by Rogers and Lance (1964),
Anderson (1966), and Cooke(1966) show that the boundary layer created by a
uniformly rotating flow over a finite disk of radius r, approaches the terminal

similarity profiles given in BBdewadt's solution when r/ty s 0.5. The build
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Fig. 3.7 Tangential velocity profile between a rotating disk and a stationary
disk at r/ro = 0.52 for 922/v = 1002. (Bien and Penner, 1970)

up of the overshoot in circulation within the boundary layer is shown in

Fig. 3.8. The overshoot in circulation within the boundary layer is zero at
the beginning of the boundary layer at r = ro. As the boundary layer grows in
the direction of decreasing radius the maximum rotation rate increases until

it reaches the value given by Bodewadt.

These terminal similarity solutions are closely related to the classical
Ekman (1905) Spiral obtained in a boundary layer determined by the balance
between viscous and Coriolis forces. When the wall rotates at a rate only
slightly different from the rotation rate of the fluid the solution for the
boundary-layer profiles is the Ekman Spiral. It can be obtained from Eqs. (3.2
-35) and (3.2-36) with B = 1 and the boundary conditions given in Egs. (3.2-37)

modified to g(0) = 1 and g(x) = 1 + ¢ . The solution for ¢ << 1, then is
g=1+¢ [1- e’ cos vl (3.2-39)
f=- % [1- e Y (sin y + cos y)] (3.2-40)

This gives a spiral distribution for the horizontal velocity component similar
te that given in Fig. 3.5a. 1In this limit the boundary layer, generally termed
Ekman layer (Greenspan, 1968) is completely determined by local conditioms.

The parameter £ may be a function of r and Egs. (3.2-39) and (3.2-40) remain

valid.

The similarity solution of the boundary layer of thin radial extent
that most closely relates to the problem of a confined vortex flow is the

solution given by Stewartson (1957, 1958). TIf the transformation given in
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Fig. 3.8 Comparison of the angular momentum in the boundary layer with the angu-
lar momentum of the free stream for solid-body rotation (Anderson, 1966).

Egs. (3.2-15) is to be used to represent a flow which has constant circulation on
a cylindrical surface of constant radius, then the parameter p must be restricted

to a value of 3/5. For this case Eqs. (3.2-13) and (3.2-14) reduce to

2
P I SR (3.2-41)

N & TS
ygg' = 3FE'" + 4E'E" + _]%I_g £ (3.2-42)

s2s3
2

In order to keep the dimensionless variables and their derivatives as order

one quantities it is appropriate to set
$263 =1 and N§ =1
It follows directly, with the aid of the definition of N and 82, that
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§ = (=) (3.2-43)

The boundary conditions assumed by Stewartson which are appropriate for the
boundary layer on a semi-infinite cylinder that rotates about its axis in a
fluid otherwise at rest are

£(0) = £'(0) = £'(=) = O

g(0) =1, g(=) =0 (3.2-44)

The profiles obtained by integrating Eqs. (3.2-41) and (3.2-42) with the
boundary conditions of Eq. (3.2-44) are given in Fig. 3.9 in dimensional terms.
The convection within this layer 1is driven by the pressure gradient across it
and consequently has a weaker dependence on Reynolds number than the typical

inverse 1/2 power dependence,

1.0
=Y
& Qreo
0.5
1
v z8®
Qro zZ Vv
S W s N : == |
0 1 2 3 43 52/2 7
(E_ 1) ( EQ_Q_)
Ty Zv

Fig. 3.9 Velocity distributions near a semi-infinite cylinder rotating
about the z axis. (Stewartson, 1958).

Before closing this section, let us consider an unsteady, similarity solu-
tion that was derived by Oseen (1911) and Hamel (1916). If we assume that the
stream function is a constant and that the circulation depends on n and T only,
then Eq. (3.1-11) is identically satisfied and Eq. (3.1-10) reduces to

1 3 _ 4n a2p
=" ‘Nn—zan (3.2-45)

This can be transformed into an ordinary differential equation in terms of the
similarity variable y = n/t

N
47

which can be easily integrated twice to give

"+ =0 (3.2-46)

- y
= c; + cpe 44 (3.2-47)
When the boundary conditiomns that I*(0) = 0 and I*(®) = 1 are applied, Eq.
(3.2-47) yields
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= y
Pe1l-e 4 (3.2-48)
or in dimensional terms r2
_ Vot _ ~ vt
veTpoU-e ) (3.2-49)

Equation (3.2-49) provides the rate of decay of an isolated vortex under
the action of viscosity. This solution can also be applied to the asymptotic
decay of a trailing vortex far downstream by replacing t with z/VL, with w _ the
constant freestream velocity (Batchelor, 1964, and Newman, 1959). The solution
is valid as long as the axial velocity is nearly equal to the freestream
velocity throughout thie vortex. 1In terms of our governing parameters, this is

true when §2 << 1.
3.3 Steady, Core Solutions for Large Swirl

A standard method for solving the Navier-Stokes equations is to look for
combinations of the governing parameters that are small in the problem of in-
terest and to obtain asymptotic solutions to the equations for the limit of
this particular combination approaching zero. A vortex solution for small
N was considered by Granger (1966), for small (SL/ro)2 by Ostrach and Loper (1966)
and Kwok (1969), and for small S by several authors as mentioned in Section
3.1. However, as also seen in Section 3.1, the most interesting limit for
our problem is that of S » «, Asymptotic expansions for this limit were

considered by Lewellen (1962, 1964) with the additional restriction that 7 = =,

Since the swirl parameter enters Eqs. (3.1-10) and (3.1-11) as s2 only,
it is appropriate to let ¢ = S~2 and consider the two variables expanded in

powers of €, i.e.
(o]

=] " F(n,8) (3.3-1)

n=o

and
[oe]

n
v=1e v (n,8)

n=o

When these series are substituted into the equations of motion and terms of equal
powers of e equated, a set of equations for the Fn's and ¢n's are obtained.

. , -1 .
Since there is only one term with £ , it is necessary to have

Ao?
3

Terms with coefficients of order one lead to the following two equations;

=0 (3.3-3)
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3o g _ 3o 3 _ _ 2n EE;D (3.3-4)

3¢ 9n on 9¢& N on
and
Iy oI A, 93y 3, 93y 2 32 22y
2o 91, - %Y o _ %9%o 9 Vo £ o e} _
2 3E° T 8E and " an sfa TN a2 (M anz ) (3.3-5)

As discussed in Section (3.1), Eqs. (3.3-3) and (3.3-4) lead to the
requirements that
fb = go(n) (3.3-6)
and
bo = £.(n) + £ £5, (M) (3.3-7)
When Eqs. (3.3-6) and (3.3-7) are used in Eq. (3.3-5) it is clear that I';
will be of the form
™ = g0(m) + & g1,(n) + £2g,,(n) (3.3-8)
This process can be continued to show that this expansion in e also leads to
and expansion in £. The dual subscript notation represents first the exponent
of ¢ and second the exponent of £. The ordinary differential equations for

the radial functions are; from Eq. (3.3-4)

2n go" + N fOl go' =0 (3.3-9)
and from Eq. (3.3-5)
! ' 2 " B
BBl = £5 g0 - foo fo1 *+ 73 (Mfoo )" (3.3-10)
1
s 2?12 = fo, fc'>'1' - £4) fgl +% (n £o0" (3.3-11)

These 3 equations are not sufficient to determine the 6 unknown variables. The
same situation holds if the series is truncated at any higher order value of e.

Truncation of the series at any point leaves more unknowns then equations.

The system of equations can be made determinant at any order of e if
appropriate boundary values are specified to that same order of e. It is pos-—
sible to specify the stream function at two axial positions, say at £ = 0
and £ = 1. For example if y, is specified to order one at the two axial
positions then

£ oM = ¥, (n,0) (3.3-12)
fol(”) = ¢ ,(ns1) -y (n,0) (3.3-13)

This leaves Eq. (3.3-9) to determine g,. This is the same equation for cir-
culation as Eq. (3.2-16) for the Donaldson family of similarity solutioms.

However, the requirements on the stream function are quite different now.
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Previously, f had to satisfy the vorticity equation (corresponding to setting
the right hand side of Egqs. (3.3-10) and (3.3-11) to zero) but now the vor-

ticity equation is satisfied by a higher order axial variation in the circula-
tion so that the radial variation of the stream function is free to be deter-

mined by the boundary conditions.

Equation (3.3-9) can be formally integrated twice with the boundary condi-

tions that
Lim = 1, and *0) =0 (3.3-14)

n >

to give

¥, = (3.3-15)

If the boundary layers on the walls of a cylindrically contained vortex
are ignored an approximate variation for fo, appropriate for flow in a cylin-
der as in Fig. 2.1 is

for = 1, )2 <n<1
ro' -
(3.3-16)

Toy2 Tey2
fo]_ n(;Z) ’ n < (;O)
This assumes uniform radial flow when ¥ > r. and uniform axial flow out the
exhaust. Equation (3.3-15) with fo; as given in Eq. (3.3-16) yields (Einstein

and Li, 1951)

_X N N
ne e n.2t1 2ne, 2
TLo=l_E[(;e) -1l - e -1 n > ne
2 _MNn (3.3-17)
sxRea-e 2o n < ne
with
_X N -
Ne € 2 GE - 2 T2
K="282 [ -1l -5k e D (3.3-18)
l__
2

The circulation distributions given by this solution as a function of N are
given in Fig. 3.10.

'
0ol

to continue this solution to higher order in €. TIf fy, is made properly

With the discontinuity in £, present in Eq. (3.3-16), it is impossible
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Fig. 3.10 Circulation distribution as a function of radius.

continuous, then the solution can be continued to higher order (Lewellen, 1962).
Axial boundary conditions which correspond more nearly to an experimentally

obtained axial velocity distribution have been considered by Turner (1965).

It is also possible to extend the expansion procedure to the case in
which the axial flow is allowed to be of the same order as the tangential flow
(Lewellen, 1964). This can be done by letting

Fs=] 15(ng) s (3.3-19)
n=o

- 1-n
v =) Yp(n,&) S (3.3-20)
n=o

where S is based on the radial mass flow as in the previous case. The lowest
order term in the stream function expansion which determines the relative
magnitude of the axial velocity must now be independent of £. When Egs. (3.3-19)
and (3.3-20) are used in the equations of motion, it is clear y; and T, may be
linear in & providing the boundary conditions are compatible. In this case,
without loss in generality, the coordinate system can be chosen so that at
£=0, ¢, =T, =0. It is appropriate then to take

by, =& £5,(n)

G

(3.3-21)

1 = E g]_]_(n)
Then if gll(n) is eliminated from the resulting equation, Eq. (3.3-9) may be
generalized to

anog; + Nf

4N 2
| 20 (AL - f! " 1y " =
018080 SZ n°f o oot £oof + N (Zfoo + nfoo)] 0

oo o0 ol 00 ol
(3.3-22)

] 2
with §_ = (32F9%0) and £ (n) = S_y_(n).
. 00 ao
axial
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When Sa2 >> 1, the circulation distribution is determined by the balance
between radial convection and diffusion of angular momentum. When Sa2 < 1 the
axial convection is more important than the radial convection in balancing the

radial diffusion of angular momentum.

Linderstrom-Lang (1970) used Eq. (3.3-22) to investigate the type of

vortex flow found in a Ranque-Hilsch tube. This is discussed in Section 3.6.

To use either Eq. (3.3-9) or the more general (3.3-22) to solve for the
circulation distribution in a vortex chamber it is necessary to determine
the stream function at two axial locations, say the top and the bottom of the
chamber. However, as already seen in the last section there are adjustment
layers required on the end walls to bring T to zero and these adjustment layers
induce a secondary flow of the order

; 1/2 -
mb‘l.% 2mp [Fov] r (3.3-23)

Whenever this boundary-layer flow is of the same order as the total mass flow
through the chamber, the boundary layer may be expected to play an important
role in determining the stream function distribution. This occurs whenever

; 1/2 1/2
m.b.l. " Zﬂp.[rn\)] Yo =g [%O] N1 (3'3_24)

Mtotal Teotal

Thus unless Fo/v >> §2 it is necessary to solve the end wall boundary-layer
problem to specify the boundary conditions on the stream function.

Boundary layers in a rotating flow are considered in the next section

prior to considering the complete flow in the chamber in the subsequent sectionm.
3.4 Boundary Layers in Rotating Flow

This section is largely a condensed version of the review by Rott and
Lewellen (1966). The boundary-layer simplifications (valid if the boundary-
layer thickness is much smaller than the radius of curvature of the wall
surface in either direction) reduce the axisymmetric Navier-Stokes equatioms
for constant property fluids to the following set of equations, expressed in
boundary-layer coordinates, s and n, along and normal to the wall meridian:

Momentum along the wall,

Ju Ju v2 dRr 13 32u
Sus 4 Qug _ VT AN _ L 9P s -
Ys3s T "M 3m TR ds o 3s TV 32 (3.4-1)
Tangential momentum,
2
ug VR + v o ‘v
R 3s Un an v anZ
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Momentum normal to the wall,

2 2 2
g2 &R Vi, AR %N/ 1 9P -~
us 527t R {1 (ds> 1 > on (3.4-3)
Continuity
1 9Rug au -
R3s Ton - 0° (3.4-4)

Here usand u are the velocity components along s and n, v is the tangential

velocity and R the radius of the wall surface from the axis of rotation.

1f R is equal to s then the wall becomes a disk and u, and u are the
radial velocity u and the axial velocity w, respectively. In this case
Egs. (3.4-1) to (3.4-4) are equivalent to Eqs. (3.1-24) and (3.1-25). 1In the
other limiting case when R = constant these boundary-layer equations are equi-
valent to Egs. (3.2-13) and (3.2-14). Similarity solutions for these two
limiting cases have been considered in Section 3.2. A discussion of similarity
transformations for a more general variation of R(s) may be found in Rott
and Lewellen (1966). Of more primary interest here is an integral method of
solution which has sufficient flexibility and simplicity to be used when
there is a strong interaction between the boundary-layer flow and the outer
core flow.

Momentum integral equations may be obtained by integrating Eqs.(3.4-1)
and (3.4~2) with respect to n across the boundary layer. Equation (3.4-3)
may be ignored and the pressure assumed constant across the boundary layer as
long as |dR/ds| >> |dé/ds|. 1If u, > 0 and v +» v(®) as n + « the two momentum

integral equations may be written as

6 & 2 .2
51_[ usszn—f v2 = v(=); @Rdr__RvQSJ
(o}

ds o R ds an (3.4=5)
and
d 8 v
= 2 - © 2 = — R2y 22
ds Jo ug v RZ dn - v(=) RZ up(8) = - R%v o | (3.4-6)
When the continuity equation is used
§
up(8) R = S f ugR dn (3.4-7)
o
the tangential momentum equation can be written as
4a G(V_ («)) R2 d +M 8 R dn = -R2 v
ds | v T o5 " METSIR (3.4-8)

Equations (3.4-5) and (3.4-8) can be used to determine 2 variables. Thus
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an approximate solution to the boundary layer can be obtained if it is possible
to assume shape factors that put all of the integrals and the two wall
derivatives in terms of only 2 variables. For this purpose, assume that

v

;(oo) = g(c) (3.4"9)
s = £r(p) (3.4-10)
Us

max
with ¢ = n/8, and £ and g known functions of . The two momentum equations

may then be written in terms of the 2 variables § and Q = fi ugR dn as

d = - dl _ . . . VRT ~
T QD) - 2 Q3= = 2,8'(0) —— (3.4-11)
a 4 dR 28 _ _ £"(0) vQ -
Y23 & res ® T T ED 2 (3.4-12)

2
with T = v(<)R and Al, A, and k3 known functions of the profile shapes

given by

1

AL = £/ f £'(1 - g) dg (3.4-13)
1 o

A, = J [£'2/£(1)2] dz (3.4-14)
(o]
1

Ay = f (1 - g?) dz (3.4-15)

o
Of course, the crucial step in this integral formulation is the choice of
the profiles f' and g. 1In general, one would not expect f' and g to be indepen-
dent of s. In fact, when they are independent of s it is possible to obtain
exact similarity solutions to the boundary-layer equations and as seen in
Section 3.2 these similarity solutions can only be obtained for quite special
flows. The trick then is to choose f' and g as some average functions which
make Egqs. (3.4-11) and (3.4-12) approximately valid over a wide range of flows.
The profiles chosen by Taylor (1950) appear to be appropriate. Investigation
of other profiles may be found in the work of Cooke (1952), Anderson (1961),
Mack (1962) and King (1964). Taylor's profiles are given as

= 27
A

g=2¢~1¢2 (3.4-17)

With this choice of profiles, the numerical values of the profile parameters

£ z(l - )2 (3.4-16)

are found to be
Ay = 2.5, Az = 1.375, A3 = 0.467

£1(0)/£(1)= 12, gY0) = 2
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It is now possible to solve Eqs. (3.4-11) and (3.4-12) numerically when
T'(R) and R(s) are given along with boundary conditions at some s for Q and
§. However, in order to couple the boundary-layer solution to the solution of
F'(R) it is desirable to obtain an even simpler solution. One way of doing this
is to approximate Eq. (3.4-12) as an algebraic relation between § and Q. If
é and 8 start from 0 at some R0 where T = Fo and dR/ds = R'(0) then a series

expansion about this point shows that initially

3 ey 5x, A 1 £"(0), vRy2%Q
6° = [g (0)-—§§;2 3, T 1 POS[_R.(O)] (3.4-19)

In the initial development of the boundary layer, Eq. (3.4-19) can be substituted

for Eq. (3.4-12) with very little loss in accuracy. It is also possible to show
that if the boundary layer develops to some type of terminal similarity as
discussed in Section (3.2), then again

3. VR2Q _

This suggests that Eq. (3.4-19) may be a good approximation at all stages
of boundary-layer development if local values of R, T and R' are used instead

of the initial values. With this simplification, Eq. (3.4-11) may be written as

aar _ \.Q dr _ Ay g(0) v2/3 R1/3 p5/3 (_gv)1/3
ds 17 ds [g'(O‘SA]AZ +_l f"(O)] qi/3 (3.4-21)
7 Xg Ay £(1)
This can be formally integrated with Q assumed 0 at s = 0 to give
- s T 2'%X1
q = 1.56 vl/2 "1 {f r [R (-R')11/3 as} 3/ (3.4-22)
o

Perhaps the two most interesting cases to consider are those of potential
flow (I' = constant) and solid body rotation (I « R2) over a flat disk R' = -1.
(Note R' is negative because the boundary layer begins at the outer edge of the
disk as long as the fluid rotates faster than the disk). 1In both these limit-

ing cases, Eq. (3.4-22) reduces to
q = 1.26 [v/T 11/271 [R */3 - R4/3]3/% (3.4-23)

This approximate solution is compared with a step-by-stepnumerical integration
of the exact boundary-layer equations by Anderson (1966) and Cooke (1966) in
Figure (3.10). The comparison is quite favorable. The Bddewadt terminal simi-
larity solution is included on the figure. Shear and boundary-layer profiles
do not compare near as favorably, but for the interaction problem to be con-

sidered in the next section a correct solution for the boundary-layer mass flow

55



1.4

- (King & Lewellen 1964)

NUMERICAI, SOLUTION
(Anderson 1966)
(Cooke 1966)

IRROTATIONAL
VORTEX

SIMILARITY SOLUTION

NUMERICAL SOLUTION
(Anderson 1966)

APPROXIMATE
SOLUTION
(Eq. 3.4-23)

SOLID-BODY
ROTATION

APPROXIMATE SOLUTION
/ (Eq. 3.4-23) —

= 0.8
)
s
[N
192}
w
g
Z
5 0.6
=
S
QO
=
w
w
w2
1
=
5 0.4
3
[9a]
=
=
<
—
A
0.2
4]

0.2 0.4 0.6 0.8
DIMENSIONLESS RADIUS, r/rO

1.0

Fig. 3.11 Comparison of solutions for the radial secondary mass flow in the
end-wall boundary layer.

is the most important,

Since Eq.

(3.4-23) agrees reasonably well with more precise numerical
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results in the limiting cases of I = comnstant and I' = QR?, Rott and

Lewellen (1966) suggest that it be used for all variations of T over a flat
stationary wall, It is hard to conceive of a physically possible T'(R) distri-
bution for which Eq. (3.4-23) will differ significantly from Eq. (3.4-22).

The boundary-layer calculations presented in this section have received
the benefit of very few comparisons with experiment, since most of the flows
of interest referred to in Chapter I are turbulent. Figure 3.7 gives a compar~
ison in one limit. Also, Anderson (1966) made measurements in laminar flow
around a bend with different vorticity distributions and found the profiles
to be closely related to those he obtained numerically. Maxworthy (1967)
compared Eq. (3.4-23) with measurements of boundary-layer mass flow based on
u(z) profiles found using vertical, hydrogen-bubble wires. There was a wide
discrepancy which Maxworthy attributed to the breakdown of the boundary-layer
approximation in the neighborhood of the axis. In his experiment, the
boundary-layer appeared to erupt in a jet on the axis as seen in Fig. 3.12.

A short distance from the wall, this jet appears to undergo a type of ''vortex
breakdown'" phenomenon. This unusual feature will be discussed in a later

chapter.

(a) | by (e)

Fig. 3.12 Eruption of the boundary layer flow at the axis of vortex flow
over a stationary wall. (Maxworthy 1967).

3.5 Interaction Between Boundary-Layer Flow and Core Flow

The boundary-layer solution derived in the last section may be used as

the boundary conditions required to complete the series solution developed
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in Section 3.3. The flow through a cylindrical vortex chamber may be divided
into three regions shown in Fig. 3.13. The flow in region I is governed by
Eq. (3.3-9) to order s~2,
1" v - -
antt "+ NfOII"O 0 (3.3-9)

Fig. 3.13 Vortex tube geometry showing division of flow into the three
regions described in the paper.

The flow in region II is governed by the boundary-layer equations. The two

flows must match along the common boundary of the two regions. The tangential

veloecity may be matched by identifying the circulation T in the boundary-layer

equations with the circulation in region I. The radial velocities are matched

by setting

£,=1- %“Lb.l. (3.5-1)

in region I and requiring that u > 0 at the outer edge of the boundary layer.
As long as S2 >> 1 the radial velocity in the boundary layer will be much
larger than it is in the external flow, region I. Thus when dealing with the
boundary-layer flow u > 0, to order $2, as n » w. For those familiar with
perturbation methods (Van Dyke, 1964), the present problem may be recognized

as a singular perturbation problem.

If the approximate relationship between the mass flow in the boundary
layer and the circulation distribution given in Eq. (3.4-23) adequately
describes the boundary layer, then Eq. (3.5~1) can be written as

£,=1-BrQ- n2/3y3/4 (3.5-2)

with the new parameter B defined as
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/2 T S
o - 2 -
2 2.52 Retl/z (3.5-3)

- 21pviy T 1
B =2.52 (2 )EGH
Since B is equal to the ratio of the maximum possible flow in the 2 boundary
layers to the total flow through the chamber, it may appropriately be called a

boundary-layer interaction parameter.

The stream function distribution, f01, may be eliminated between Egs.
(3.3-9) and (3.5-2) to yield a single equation for the circulation.
2 + N [1- BF (1 -n2/9)3/4] P =03 n2n (3.5-4)
Appropriate boundary conditions for this equation are that I'(l) = 1 and that T

match to the flow in region III. The simplest way to satisfy the matching
conditions to region III is to assume that the flow remaining in region I at

re be uniformly distributed across the exhaust so that

- n R -
0 = n, fOI(ne) i onsng (3.5-5)

and

2n M+ N[1 - BF (1 - ne2/3)3/‘*]r' 0; n<n (3. 4-6)

e

and to add in the boundary condition that I*(0) = 0. This system may now be
solved by numerical integration for general values of N,B, and ng: Solutions
to a problem equivalent to this were first given by Anderson (1961l) with a
slightly different solution for the boundary layer than that used here. If
B << 1, the solution to Eqs. (3.5-4) and (3.5-6) reduces to Eqs. (3.3-17).

Although a numerical solution is required in general, an analytic solution
may be obtained in the limit of N >> 1. This, also, is probably the most in
teresting limit physically since the Reynolds number is large even for relatively
small flow rates. In this limit it is readily seen from Eq. (3.5-4), that
if ™' is to remain finite either

I"l

]
o

(3.5-7)

or

r %(1 - n2/3)73/4 (3.5-8)
If the boundary condition that *(l) = 1 is imposed, then the solution in the
large Reynolds number limit is
F=13 nz[1-3%3%3/2=3
f-la - iy s (3.5-9)

Because of the N >> 1 limit the boundary condition at n = 0 cannot be
satisfied. The stream function variation corresponding to Eq. (3.5-9) is

£,, = 1= B(L=n2/3)3/% n >
f_01=0 H n <

fn B 1

(3.5-10)
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Physically, this flow may be described by saying that as the flow enters
through the outer rotating cylinder the circulation of the main flow remains
constant as the flow in the boundary layers builds up. When a radius is
reached at which all of the radial through flow has been diverted to the boundary
layers (corresponding to ﬁ) then the through flow remains in the boundary layers
and the circulation distribution adjusts to whatever is required to drive this
flow.

Although £, = 0 for n < n, the product Nf | remains finite so that there

is a small but finite radlal flow in this region. In fact, by combining Egs.

(3.3-9) and (3.5-8), it may be seen that

_2nP"  3p2/3 - 2/3
Nf01 =-TFr = - T 773 - (3.5-11)

Since this last expression is negative whenever n > 2v2/27, it demonstrates that
there is a region of small radial outflow whenever ﬁ > 2V/2/27. A typical

streamline pattern is shown in Fig. 3.14.
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Fig. 3.14 Typical meridional streamline pattern in a vortex chamber with
§2 >> 1, N>> 1 and B 2 1.

The existence of a radial stagnation surface is demonstrated by the dye
front in Fig. 3.15. The chamber shown had a variable length to allow B to
vary. In this picture £/D = 1. A detailed comparison of its position with
theory is reserved until Chapter V, after turbulent boundary layers have been

discussed.
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Fig. 3.15 Photograph of the dye pattern observed in a vortex after a pulsed
dye injection at a time equal to that required for a few chamber
volumes of water to flow through the apparatus. (Lewellen, Ross
and Rosenzweig 1966).
The analytic solution, of course, looses its validity in the region of
the exhaust hole where the boundary-layer must breakdown. Figures 1.9 and 1.10
show that a significant fraction of the boundary-layer flow erupts into axial
jets in the immediate neighborhood of the exhaust. The details of this
boundary-layer separation problem has not been solved. In the theoretical
treatments in the literature it has either been ignored or treated parametrically

(Rosenzwelg, Lewellen and Ross 1964).

A comparison of the present interaction theory with experiment was given
by Rott and Lewellen (1966) for an experiment by Maxworthy (1964) which did
not involve any of the uncertainties associated with the exhaust. The experi-
mental arrangement is shown in Fig. 3.16. Equation (3.4-23) may be used
to describe the flow distribution into the boundary layer on the stationary
wall but an additional expression must be derived for the boundary layer over
the rotating disk. A procedure analogous to that of Section 3.4 may be
carried out for the rotating wall (Rott and Lewellen, 1966). The simple

approximation proposed for use is that
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By = 0.55 (2mp) F%]I/Z(QRZ -T) (3.5-12)
*7* (rotating wall)

provided the wall rotates faster than the fluid. 1In this case the boundary

layer mass flow is directed toward increasing radius.
plate at rest ~ |

rotating _~ C{qz}b 2

Fig. 3.16 Experimental arrangement to investigate confined flow between a
rotating disk and a stationary disk. (Maxworthy 1964).

Since there is no net mass flow through the container in this problem the
radial flow in the main flow results from any difference between the flow in

the two end wall boundary layers, i.e.,

T -
Nf°1 - mb'l'(rotatigg w;ii; b'l'(stationary wall) (3.5-13)
thus 1/2 )
Nf, = —c%) -%0 {1.26 T* (1 - n2/3)3/% _ 0.55 (n - ™} (3.5~14)

The governing equation for the circulation, Eq. (3.3-9), for this problem may

be written with the aid of Eq. (3.5-14) as

0 1/2 r

2 . .
2 G 07{1.26 T* (1 - n2/3)3/% — 0.55(n~1) }1*'= 0 (3.5~15)

N
It is evident from Eq. (3.5-15) that if the rotational Reynolds number

(or Taylor number), QR02/v is much greater than one, and the boundary conditions

on I*, namely I*(1l) = 1 and I*(0) = 0, do not permit I* to be constant, then the

term in the brackets must approach zero. That is, there must be a detailed

matching of the flow out of one boundary layer into the other. This occurs

when

= 0.55 7
= 955 ¥ 1.26 (1 = n273y3/4 (3.5-16)

This circulation distribution is compared with Maxworthy's experimental
distribution obtained by photographing hydrogen bubbles released in the flow
in Fig. 3.17. The agreement, even though not perfect, is quite encouraging.
Near the center where the influence of the side walls is small this problem can

be solved exactly by providing detailed matching of the flow out of a Bddewadt
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boundary layer on the stationary disk into the boundary layer on the rotating
disk. This gives the profile in Fig. 3.7. The experimental points of Fig. 3.7
were taken with a stationmary outer cylinder so that its influence is not felt

to as small a radius as it would be for a rotating outer cylinder.

Recently, Pao (1970) has investigated the flow field for the conditions
of Fig. 3.16 with a numerical scheme for integrating the full Navier-Stokes
equations. For Ret < 200 (his numerical scheme diverges for higher Reynolds
numbers), his solutions agree very well with his companion experiments. His
results are closer to Eq. 3.5-16 than would be predicted by the finite Reynolds
number correction given by Rott and Lewellen (1966). At Reynolds numbers of
a few thousand his experiments exhibited boundary-layer eruption at the center
of the stationary plate with the subsequent breakdown as observed by Maxworthy
(Fig. 3.12). It is interesting to note that this discrepancy in the boundary
layer flow near the axis of the stationary wall does not have a large influence

on the mid-plane circulation distribution as given in Fig. 3.17.
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Fig. 3.17 Angular velocity distribution of the main body of fluid between a

rotating and a stationary disk when enclosed by a cylinder rotating
with the rotating disk. (Rott and Lewellen, 1966)

Another interaction problem which avoids the problems of the exhaust
is that of flow through finite, concentric, porous cylinders with the outer
cylinder rotating with an angular velocity . This problem has been considered
by Farris, et al (1969). Their experimental set up involved rotating one
end wall with the rotating outer cylinder and holding the other end wall

stationary. They numerically integrated the axisymmetric Navier-Stokes equations
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Their limited comparison with numerical

using a finite difference technique.

Unfortunately, their numerical in-

and experimental results was favorable.

tegration scheme diverged at tangential Reynolds numbers above a few hundred

or at radial Reynolds numbers much above 10.

When there is no net radial flow through the cylinders in the present

The extent to which

, it is quite similar to the previous problem.

problem

detatiled matching occurs between the two boundary layers at as low a Reynolds

as QR 2/v =

3.18.

200 is shown in Fig

o]

Fig. 3.18 Flow pattern
with no net radialflow

for flow between a ro-

tating outer cylinder

and a stationary inner
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The fact that the lower end wall 1s rotating prevents a simple comparison
of their results for radial through flow with Eq. (3.5-4), but the general
features of the flow agree with the analytic model. Contours of constant
tangential velocity, from their numerical data, are shown in Fig. 3.19 for a
case with § = 13. It is evident that the tangential velocity is independent
of the axial coordinate except in thin adjustment layers imposed by the

boundary conditions.
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Fig. 3.19 Tangential velocity contours with radial inflow for condi-
tions similar to Fig. 3.19. Re = 260.0, N = 9.83, § =
13.2 (Farris, et al, 1969).
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The problem which permits the most complete analytic solution to
the interaction of the boundary-layer flow with the chamber flow is that of
weak flow through a rotating container. As long as the Rossby number, Ry =
ﬁ1/21rp£2rw3 = 1/8, is sufficiently small the flow consists of a linear perturba-
tion about uniform rotation. Greenspan (1968) has given extensive treatment
of this type of flow. Figure 3.20 1is a sketch of the flow path for flow
introduced through one porous cylinder and withdrawn through an inner porous
cylinder. With the exception of the regions immediately adjacent to the cylin-
ders the radial flow passes through the end wall boundary layers, now termed
Ekman layers, E = v/Qrwz. The solutions for the velocity distributions
within the Ekman layer are given in Eqs. (3.2-39) and (3.2-40). As long
as the no slip condition on the axial velocity at the surface of the porous
cylinders is relaxed the solution to the flow can be obtained by coupling
Eq. (3.3-9) with the Ekman layer dependence of stream function on circulation
perturbation. The perturbation to the circulation is a comstant equal to
—QrOZRO/El/Z except in the radial layers adjacent to the cylinders. In

these layers
Qr 2

v =Qr - —y R [1- e %)
r E?/Z (3.5-17)
with 1/2
N N 2 T
X = {E i— [Z + EI/ZE‘J] ' }|r - rw | (3'5_18)

where the plus sign corresponds to a cylindrical source and the minus sign a
cylindrical sink through either the outer cylinder at T s OF the inner at r,.
Hide (1968) has shown that this model agrees well with experimental results.
To include the no slip condition on w at the surfaces of the cylinders a
third type boundary layer of order E1/3is required. For the solution in this
layer see Greenspan (1968, page 116).

For this limit of complete domination of the flow by rotation, the radial
stagnation surface in Fig. 3.14 has essentially moved out to the outer cylinder

so that the outer region of potential flow has been eliminated.

To complete the flow problem of primary interest in this review it is
necessary to consider the viscous exhaust problem. This is done in the next

section.
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+ ROTATING
POROUS
CYLINDERS

Fig. 3.20 Rotating cylindrical container showing paths of radial flow through it.

3.6 Viscous Exhaust Flow

To complete the solution for imcompressible laminar flow in a vortex
chamber it is necessary to consider flow through the exhaust. Flow in region
ITI of Fig. 3.13 may be expected to depend strongly on the exhaust constraint.
The inviscid approximation to the constraint on flow through the chamber im—
posed by the exhaust was discussed in Section 2.2. How is this constraint af-
fected by vixcosity? The effects of viscosity may be separated into two cate-
gories: those due to the rotational nature of the flow through the exhaust, and
those due to local dissipation within the neighborhood of the exhaust. Probably,
the first is the most important of these two and it is certainly the most

amenable to direct analysis. Therefore it will be treated first.

Neglect of local dissipation in the flow is equivalent to letting N + «

in the governing equations. In Section 3.1 it was shown that in this limit,

for steady flow the tangential momentum equation reduces to

r =T(y

and the tangential vorticity equation may be written as
52
D@y = nF@) -5 2y’ (3.1-19)

If the local exhaust problem is treated as a quasi-one~dimensional problem,
that is axial derivatives are neglected in comparison to radial derivatives,

this equation may be reduced to

2 2
4n —2;% = nF(y) - % (r2)' (3.6-1)
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For the exhaust problem it is appropriate to consider F(¥) and T(¥) as
given for the flow upstream of the exhaust. Recall that F(y) is related to
the total pressure variation thru Eq. 3.1-20. For any given distributions,
Eq. (3.6~1) can be solved for P(n), subject to the exhaust constraint dis-
cussed in Chapter 2, that thru flow be a maximum for any given pressure drop
across the exhaust. The previously considered potential example may be
obtained by setting

I'(y) =0=F () (3.6-2)
with the boundary conditions that w(ne) = 1 and w(nc)

0 and the constraint

that the dynamic pressure be a minimum at Ne-

An example of rotational flow which has received a great deal of atten-
tion in the literature (Batchelor, 1968) is that of T proportional to ¥ which
corresponds to uniform rotation when the axial velocity is uniform. Since
the ratio of circulation to stream function may be absorbed in the parameter
S, there is no loss of generality in setting I = ¢. In this case Eq. (3.6-1)

may be written as 2
ZHP" = F(lp) — % lb (3~6_3)

A further specification of upstream conditions is necessary to determine the
function F(y). For example if the axial velocity is constant with radius
upstream

(1) F = constant = S° (3.6-4)
while if the total pressure is constant across streamlines

(ii) F=20 (3.6-5)

In either case (i) or (ii), Eq. (3.6-3) may be reduced to
4’ + 5%y = 0 (3.6-6)
where ¥ = ¢ - n in case (i) and directly equal to ¢ in case (ii). The general

solution of Eq. (3.6~6) may be determined to be first order Bessel functions

v = AV Jl(s/ﬁ) + B/n Yl(s/ﬁ) (3.6-7)
The constants are determined by the boundary conditions
Case (1) Case (ii)
v () =1-n, v(n) =1
- - (3.6-8)
¥n ) = - ng y(n) =0
and the extremum constraint given by
Il + E‘|n - = minimum or |$'|n . minimum (3.6-9)

C

is used to determine nc.
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Case (i) was worked out by Hawkes (1969) and case (ii) by Strickland
(1968). Results for the core size and normalized mass flow are given in
Figures (3.21) and (3.22) as a function of the swirl parameter a to facilitate
comparison with the potential results of Chapter II. In each case, the value
of Ap used to normalize the results is the difference between po(re) and P,
In case (i) the swirl parameter is limited to a value of v2/2 since a portion
of Ap is needed to maintain the difference in total pressure between T, and
r, imposed by the constraint that the axial velocity be uniform upstream of

the exhaust.

1.0
~— = — W= const., v = Qr initially
r —— p_ = const., Iy ///
o
Xz —C.9 | — .
— — — —— Potential flow constraint from///
o Fig. 2.2

8l e

g ~

v
6 — /

] =l

0 .1 .2 .3 4 .5 .6 .7 .8 .9 1.0
v(re)

@ = 1/2
[E(Po (re)~pc) ]

Fig. 3.21 Exhaust core radius as a function of swirl for different
initial flow distributions.
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It may be concluded from Figure (3.22) that including the effect of
vorticity tends to reduce the influence of swirl or mass flow thru the

exhaust.

-— - — W = const., v = Qr
initially N

-2 —_— po = const., I'=y \\\

—— — — Potential flow constraint from\\\\

A1 Fig. 2.3
AN

v(re)

=73 1/2
[-p-(po(re)—pc)]

Fig. 3.22 Exhaust mass flow as a function of swirl for different
initial flow distributioms.

In the present inviscid, rotational model of exhaust flow there is a dis-
continuity in velocity at r.- This discontinuity is diffused out in a real
viscous flow and results in a recirculating flow within the core of the
exhaust. The reversed flow along the axis of a vortex induced by this recir-
culation is often observed experimentally (e.g. Donaldson and Snedeker 1962).
The shear layer between the counter flowing streams is difficult to solve by

standard techniques. Three different approaches to this problem merit dis-
cussion.
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The similarity solution of Long (1961) discussed in Section 3.2 repre-
sents one attempt at the solution of this viscous exhaust problem. This
solution does successfully exhibit the reversed axial velocity along the axis
of the vortex over a range of values of the ratio of angular momentum flux to
axial momentum flux. On the other hand, it cannot be used to completely
describe the flow in the exhaust of a vortex chamber because of the inflexi-

bility of the similarity solution to match the boundary conditions.

The momentum integral approach to this problem has been used by Mager
(1970). He obtained two types of solutions, a mass—-flow~-dominated core
solution and a swirl-dominated core solution. Some of his results are given
in Fig. 3.23, plotted in the same way as Fig. 3.22 to facilitate comparison.

These results of Mager were carried out for nozzles whose shape is given by

4zR
2 _ 2 t z
R” = 5Rt + 30 (30Rt - 2) (3.6-10)

and the axial velocity was assumed uniform across the entrance of the nozzle.

The initial tangential velocity is specified as

v = ;¢ > 90

(3.6-11)

ool R|H

3
v=gl2g-(@1;r<s

with § representing a viscous core. The parameter APi on Fig. 3. 23 represents
the ratio of the initial difference in stagnation pressure between the axis
and the nozzle wall to the maximum dynamic pressure available thru the nozzle.
With o and APi specified, di is determined. The dashed line on the plot is a
limiting case of di = Ri which bears a close resemblance to the W = const.
curve on Fig. 3.22, and is limited to & < 0.42. This represents all of the
dynamic pressure available for conversion into swirl dynamic head, since the
rest of the available pressure is needed to maintain the initial pressure

difference between the axis and the nozzle wall.

Mager's swirl-dominated solutions are more difficult to interpret. The
initial conditions required for these solutions apparently would be unstable
and therefore unlikely to occur in an experiment. The reversed flows which
occur at the throat for these swirl-dominated solutions should extend to the
nozzle entrance. To support this statement it is necessary to borrow from
ideas in the future section on vortex breakdown. If the nose of a reversed

flow bubble represents a type of vortex breakdown as suggested there, then it
cannot occur in an accelerating region of the flow.
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Figure 3.23 was obtained for a thru flow Reynolds number of 104. Mager
demonstrated that in general, for the mass-flow-dominated solution, a
decrease in Reynolds number tends to increase mass flow thru the nozzle. How-

ever, the degree of variation is relatively small.

A third approach to the problem of viscous shear in the exhaust is to
utilize the series expansion of Section 3.3. Linderstrom-Lang (1970) used
Eq. (3.3-22) to determine the circulation distribution across the exhaust
after determining f00 and fol by matching two experimentally measured axial
velocity distributions. However, the resulting circulation distribution could
not be compared directly with experiments since the experiments were for tur-
bulent flow. Instead, comparison leads to an estimation of turbulent diffus-

ivity.
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3.7 Complete Flow in a Chamber
The ideas of the last 4 sections may be summarized in terms of an iter-

ation procedure for solving for flow in a cylindrical vortex chamber.

1) Solve the inviscid, potential problem to determine the mass flow, ﬁ,
as a function of a specified pressure drop across the chamber, Ap, and input

circulation, Fo. From this solution (Fig. 2.3) compute the dimensionless

parameters .
m
N = m (3-7_1)
ZﬁpPor
§=—2% (3.7-2)
m
and oT r
B = 2.5 (ZTHL) ( 0)1/2 W
M L
m
. (3.7-3)
- S _wy1/2
= 2.5 (N T )

If N >> 1 and B << 1, this potential approximation should be reasonably valid
and no iteration is required.
2) (a) IfN=0(), B<<1, and 52 >> 1, compute the solution as given
in Eq. (3.3-17) as the next approximation.
(b) If N> 1, B2 0(1), and 52 >> 1, compute the solution as given
in Eq. (3.5-9) and (3.5~10) as the next approximation.
(c¢) 1If both N and 82 are 0(1), the flow must be treated as a fully
viscous flow and the approximations considered here cannot be used. If
82 << 1, the swirl may be neglected in the flow.
3) Solutions given in (2a) and (2b) may be used as initial conditions
to solve the inviscid, rotational exhaust problem as outlined in Eq. (3.6-1)
for a new value of m. This would permit recomputing N and B and the repeti-

tion of step (2) until the iteration (hopefully) converges.

The iteration as outlined here has not been carried out in the litera-
ture. The major difficulty is the jump between steps (2) and (3). As
discussed in Section 3.5 there is a separation of the end-wall boundary layer
in the neighborhood of the exhaust hole. This makes it difficult to specify
the initial conditions for the exhaust problem. Perhaps, a better reason for
this omission of a rigorous solution to the complete laminar vortex flow thru
a chamber, is that vortices of interest are almost invariably turbulent in

one part or another of the flow.
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The most complete numerical solution for laminar flow in a vortex chamber

was obtained by Anderson (1961). He considered ﬁ as specified and assumed the

axial velocity to be uniformly distributed across the exhaust. His solution

is equivalent to the numerical integration of Egs. (3.5-4), (3.5-5) and

(3.5-6) with a slightly different solution to the boundary layer as was

referred to in Section 3.4. A comparison of Anderson's solution with the

approximation of Section 3.5 is given in Fig. 3.24.
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Fig. 3.24 Theoretical variation of mass flow rate in a laminar
boundary layer on the end wall of a vortex chamber.
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Ostrach and Loper (1966) solved the laminar, vortex chamber problem by
using an expansion with rw/L_>> 1. They also limited themselves to radii
larger than that for which boundary-layer blockage might occur, i.e. to
r > r. This restricts them to a small portion of the chamber unless B s 1.
Their solution is not valid when the chamber flow is dominated by the end-wall
boundary layers, in spite of the fact that the assumption of rw/L >> 1 would

lead to this condition even for moderate values of swirl.

Hornbeck (1969) has used a finite difference technique to numerically
integrate the equations considered by Ostrach and Loper. He specified the
ratio of v/u at the outer radius from 0 to 50, and the radial Reynolds number
based on the radial inlet velocity and chamber height between 20 and 2000 for
two values of rO/L, 25 and 5 with an assumed line sink as the boundary
condition on the axis. Figure 3.25 gives a comparison of his numerical values
of ; with the value given in“Eq. 3.5~9. The limiting values given by Eq. 3.5-9
should be somewhat larger than those obtained numerically since the effect of
a freestream u on the boundary-layer flow is neglected in Section 3.4. Unfor-
tunately, Hornbeck's numerical scheme diverged for r < ;/ so there also may be

some doubt about the accuracy of the numerical values.
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Fig. 3.25 Radial stagnation surface for a chamber with L/D = 0.1.
Points calculated by Hormbeck (1969). Dashed curve
from Eq. 3.5-9.
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Other solutions for the complete flow in a vortex chamber have involved
a turbulent boundary layer on the end walls. These solutions by Rosenzweig,
Lewellen and Ross (1964), by Wormley (1968), by Bauer (1968) and by Bichara

and Orner (1969) will all be discussed in a later section.

3.8 Proper Boundary Condition on Circulation for a Jet-Driven Vortex

Before closing this section on incompressible, steady, laminar flow in
a vortex chamber it is necessary to consider further the boundary conditions
at the outer cylindrical wall. In an experimental set up, the rotating porous
wall is rarely used. It is much more convenient to drive the vortex with
tangential injection thru a slit or a number of discrete jets. This raises
the question of the relationships between the jet velocity and the outer

circulation of the vortex.

This problem was considered by Keyes, Chang, and Sartory (1967). They
obtained a finite difference solution to the two-dimensional boundary layer
eguations with periodic boundary conditions. The flow was assumed to be
injected into the vortex thru n number of slits. Their solution for the
recovery factor, defined as the ratio of effective circulation at the outer
radius of the vortex, to the ideal circulation based on the injection velocity
is given in Fig..3.26. Experimental results confirm the theory. It should
be noted that since the cylindrical wall boundary layer is inherently
unstable, an electrically conducting fluid with an applied axial magnetic
field was used in the experiment to prevent transition to turbulence.
Caution was taken to minimize induced radial electric current flow which
would interact with the magnetic field to influence the stationary velocity

distribution.

A crude approximation to the numerical result of Keyes, Chang, and
Sartory can be obtained from a simple angular momentum balance across the

boundary layers formed on the cylindrical side walls. This leads to
2T
af, = of + 27> & © - 21z dp —2 (3.8-1)
i ) o} W o r

The term on the left hand side represents the angular momentum introduced

thru the injection ports. The first term on the right hand side represents
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the angular momentum flowing into the vortex; the second term the torque on
the wall; and the final term the torque of the vortex (assuming T constant)

on the boundary-layer fluid. Equation (3.8-1) can be rearranged to give

r, 2mrlg Tw 9
F—l=l+—.o————T (3.8-2)
o] mI‘O

An approximation is necessary to obtain a simple estimate of T If

flat plate skin friction is assumed then

2Ty
) o
_ l I‘o n n 0.66 dx (3.8-3)
W T 2P 2ur VoX 172 )
o o ] [5]
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l.€., ro 3/2[1—1_\)]1/2

TW = 0.66 po ;g— o (3.8-4)
When Eq. (3.8-4) is substituted into Eq. (3.8-2), it reduces to

T, nRe, 1/2 T 1/2

i 0.66 . § oy 2 -

T =1+ ( T ) (I.i) N (3.8-5)

with Rej = Pi/v. This approximation is included in Fig. 3.27 for the case in
which the torque of the vortex on the boundary layer can be neglected (as was
assumed by Keyes, Chang and Sartory). Since it under estimates the torque on
the wall it falls somewhat above the numerical solution. Interestingly, it

falls close to the experimental results for discrete jet driven vortex.
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IV. COMPRESSIBLE, LAMINAR FLOW

4.1 Core Flow

Whenever the flow Mach number in gases is high enough for compressibility
effects to be important, the flow is usually turbulent. In spite of this
fact, it appears useful to provide a brief survey of the more important
effects of compressibility on laminar vortices that have been predicted in

the literature.

For an isotropic, Newtonian fluid the components of the shear stress
tensor which appear in the momentum equation (1l.3-2) may be written in cylin-

drical coordinates as

¢ - 2 2u_u_1 v 2w
rr 3 or r r 9 3z
20, 3y uy  du_ 3w
Tee = 3 [z(r 7] + r) or 32]
: =24 2w _3u_u_ 123y
zz 3 2z or r r 96
- - 3 (¥, ,_1 _ou -
T.g = Tgp = M [r 3 ( ” ) . 98 ] (4.1-1)
B Y - .4
rz zr H oz or
- - 13w | 3v
Tze N Tez = r 38 0z ]
and the heat flux vector may be written as
> g 2T L 13Ty 3Ty _
g = -k [r ar r T T 96 ot 3z lz] (4.1-2)

When these forms for T and EH are used in Eqs. 1.3-1 to 1.3-3 together with an
equation of state and a viscosity law, they provide a formidable set of
equations. Rather than proceed with an extension of the general development
of the last chapter the outline of the present chapter is to review a few
particular cases considered in the literature to see when and in what way it

modifies the incompressible results.

For flow dominated by swirl, i.e. v >> u or w, cross differentiation of
the radial and axial components of Eq. (1.3-2) leads to

apv2
9z

<0 (4.1-3)

Thus if attention is restricted to only radial variations in density, the
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tangential velocity is, as in the similar incompressible case, independent of

z. The compressible tangential momentum equation can then be written as

oo B 0 8 2400

and the stream function must still be linear in z. The energy equation to the
same degree of approximation is given by

dar dvy _d 4ar 2, d(v/x) -
pur(cp e + v dr) =i [kr ir + urcv iz ] (4.1-5)

Mack (1960) has considered the case of an axisymmetric vortex flow with
no radial or axial component of velocity, and with v a function of r only.
In this case the tangential momentum equation requires that the torque be a
constant, i.e.

pr3 %; (v/r) = const. (4.1-6)

Note that a constant viscosity is required to maintain an irrotational vortex,
v ~ 1/r. The energy equation requires that the heat transfer differ from a

constant only by the viscous dissipatiomn, i.e.

- 4T

ar r2vu Q—-(v/r) + const. 4.1-7)

dr

When these two equations are combined for a perfect gas with the radial
momentum equation, he shows that even for the familiar irrotational velocity
distribution, there is, in general, a gradient in total temperature across
the vortex.

y-1 .2
Tt 1+ 5 M

T, T 71 ¥ (v=D)Pr M2

(4.1-8)

As long as the Prandtl number, Pr = Cpu/k,exceeds 1/2,the total temperature
decreases with decreasing radius. This observation will play an important
role in the discussion of the Ranque-Hilsch Tube in Chapter IX. Since this
solution requires the absence of radial velocity, Mack considered it as
associated with flow outside of a rotating cylinder. But it is also approp-
riate for flow in a vortex tube in those regions where the radial velocity is
zero. Mack, also integrated Eqs. 4.1-6 and 4.1-7 numerically for the
Sutherland viscosity law.

Equation 4.1-4 is decoupled from the energy equation as long as u is
assumed constant and the radial variation of the stream function is specified
by boundary conditions. Thus it is interesting to take some of the radial
circulation distributions discussed in Section 3.2 and solve for the corres-

ponding temperature distribution thru Eq. 4.1-5. This has been done by
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Deissler and Perlimutter (1958) for the 2-D solution in Eq. 3.2-19, by Rott
(1959) for the sink flow solution given in Eq. 3.2-20, and by Donaldson and
Sullivan (1963) for some of their numerical solutions to Eqs. 3.2-16 and
3.2-17. Figure 4.1 is a plot of Rott's results for infinite Prandtl number.
The curves are similar for other values of Pr but with a reduced cooling
effect in the middle. For Pr = 1, CP[T(O) - T_] /H* = 0.564 and for Pr = 1/2,
equal to 0.462. 1In each case the cooling effect at the center is balanced by

an increase in stagnation enthalpy outside the radius of maximum velocity.

Fig. 4.1 Temperature distributions near the viscous core of a
vortex for zero heat conductivity (infinite Prandtl
number). The solid curves represent the temperature
and stagnation temperature (or enthalpy) for a gas.
The broken curve (top) shows the temperature field
in a liquid. The dash-dotted curve gives the temper-
ature for an inviscid-isentropic (potential) vortex
flow of a gas. Note H* = 1.22 V2 and r*
= {2ur/ull/2., (Rott, 1959)

For strong vortices the largest influences of compressibility on the
circulation distribution may be expected to be related to the determination
of the boundary conditions on 3¥/3z thru the end wall boundary layer and the
exhaust constraint. These two effects are treated separately in the follow-

ing two sections.
4.2 Influences on the Boundary Layer

The boundary layer for a compressible vortex perpendicular to a solid

boundary has been considered by Anderson (1966), Ohrenberger (1967), and
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Rott and Ohrenberger (1968). The flow depends on three new parameters, in
addition to those discussed in Section 3.4. These parameters are the Mach
number, the Prandtl number and the ratio of wall enthalpy to free stream
enthalpy. Anderson's work was restricted to low Mach numbers so that the
influence of the energy equation on the velocity distributions could be
ignored. His results can be used to predict wall heat transfer in this

regime.

Most of Ohrenberger's and Rott's analysis was restricted to Prandtl
number equal to 1 with the viscosity proportional to temperature. This
permits the influences of wall temperature and Mach number on the boundary
layer parameters to be observed. In a generalization of the integral analysis
of Section 3.4., Ohrenberger (1967) gives the mass flow in the boundary layer

of a potential vortex with a constant total enthalpy over a flat disk as
. B 1y
m, = 1.562m (b v, r)l/2[1 - 0.72(1 - H—W)] x

(>
o

vl (4.2-1)

S -
3(y-1)
f ! +—Y£—1M°2°) rl/3 ds

0

3/4

with the subscript = denoting the stagnation condition in the free vortex and
Hw/Hoo the ratio of wall enthalpy to free stream total enthalpy. According to
this relation, cooling the wall serves to decrease the flow in the boundary
layer. The maximum reduction for HW/H°° = 0 is only a factor of 0.73.
Increasing the Mach number also decreases the flow in the boundary layer.

The cooling effect on mass flow may be understood as a result of the increase
in shear while the Mach number influence is a result of the reduction in

radial pressure gradient.

4.3 Compressible Exhaust Constraint

The region where compressibility may be expected to have the greatest
influence on velocity profiles is in the neighborhood of the exhaust. The
isentropic, inviscid exhaust flow was considered in Section 2.3. In Section
3.6 it was argued that the effects of viscosity on the exhaust flow could be
separated into those due to the introduction of vorticity into the flow
entering the exhaust and those due to local viscous shear within the neigh-

borhood of the exhaust, with the first of these the more important. The
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generalization of Mager's (1961) analysis of inviscid swirling flow thru a
sonic nozzle to include the influence of vorticity has been made by Norton,

et al (1969) and Lewellen, et al (1969).

Equations 2.3-3 to 2.3-7 are still valid along streamtubes even when
there is a variation of f, a, and p, across streamlines. 1In order to ensure
radial equilibrium in the general case the radial momentum equation must be
added to these equations. (It is automatically satisfied when there is no
gradient in stagnation conditions across streamlines). For quasi-cylindrical
flow, this is given by

2
dp _ pve -
v - (4.3-1)

The radial pressure gradient may be related to stagnation conditions thru the

compressible Bernoulli equation to write Eq. 4.3-1 as

-1
1% [ 2 y-1 w2+I‘2/r2) ] 3 (_Wz_ﬂ’ﬂﬁ) _y 12 (4.3-2)
po 9t Y Y ag or ag a r3

When po(w), ao(w) and I'(y) are specified, Eq. 4.3-2 may be combined with the
definition of the stream function

S_I = pwr (4.3-3)
to give a second order, nonlinear system of differential equations to deter-
mine ¥(r). The boundary conditions may be given as ¥(0) = O and W(re)

= ﬁ/Zﬂ. As in the incompressible case this is not sufficient to uniquely
determine ¥(r). This is done by invoking the extremum condition at the
exhaust that centerline pressure be varied until To is a minimum for a given
i, or equivalently, that for a given r, and m the centerline pressure be a
maximum. The possibility of a core is included by starting from ¥ = 0 at a

finite radius.

Norton, et al, integrated Eqs. 4.3-2 and 4.3-3 for some initial condi-
tions appropriate for spinning rockets. Lewellen, et al, integrated them for

P, and a, assumed constant for a parametric variation of T (¥)

-RY/¥(r )._
T =¢C [1 - e € r"°] (4.3-4)

where ZHW(re)r=o denotes the no~swirl mass flow. The parameter K plays the
role of a Reynolds number in determining the tramnsition of T from its
constant value in the outer potential flow to zero on the axis. It was

allowed to vary from 0 to . For K = » the flow reduces to the isentropic
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flow considered in Section 2.3. Figure 4.2 shows the variation in mass flow
with swirl normalized with respect to its no-swirl value for a completely
choked nozzle. Figure 4.3 gives the corresponding radial distribution of
axial Mach number for a specific swirl condition. The centerline axial Mach
numbers can be used to determine the minimum pressure ratio required to
completely choke a swirling flow, since the pressure ratio must be large
enough to support this Mach number. There is a strong influence of K on both
mass flow and Ma' However when the mass flow is plotted against angular
momentum flux as in Fig. 4.4 there is only a relatively small influence of K.
Thus viscous effects may significantly increase the mass flow thru a nozzle
for a given swirl but leaves the relationship between mass flow and angular

momentum flux relatively unchanged.
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Fig. 4.2 Mass flow through a choked Fig. 4.3 Radial distribution of
nozzle as a function of axial Mach number at
swirl with the effective the throat for o* = 0.4
Reynolds number K as a with the effective
parameter and with the total Reynolds number as a
energy held constant (Lewellen, parameter
Burns, and Strickland, 1969)
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Fig. 4.4 Mass flow through a choked nozzle as a
function of angular-momentum flux with K
as a parameter
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V. TRANSITION FROM LAMINAR TO TURBULENT FLOW
5.1 Introduction

Most of the vortices of interest for the applications in Chapters 7
through 9 involve turbulent flow in at least some region of the flow. Where
and under what conditions the transition from smooth laminar flow to turbulent
flow takesplace, is the central question of the present chapter. This is the
question of stability of the flow. The reader is referred to Chandrasekhar
(1961) for the theory of hydrodynamic stability. A given motion may be said
to be unstable if the effects of any small disturbance lead to the develop-
ment of either another laminar flow or a state of turbulence. A general re-
view of stability theory for rotating flows, although relevant, is beyond the
scope of the present work. Rather, some of the more relevant results, taken
principally from Greenspan (1968), are quoted herein without attempting to
derive them. The significance of these results for confined vortices is dis-
cussed and some comparisons made with experimental investigations of stability

in confined vortices.
5.2 Rayleigh's Criterion

In the consideration of inertial waves in Chapter 3, it was pointed out
that any axisymmetric disturbance arising in a swirling fluid, where the prin-
cipal balance of forces is between the centrifugal force and the radial pres-
sure gradient, will set up a force tending to restore equilibrium whenever

drt By the same argument it follows that if d:* the departure from
ar >0. ar £0
equilibrium will tend to grow. This criterion for stability was first dis-

cussed by Rayleigh, (1917).

As an indication of the general approach to the question of stability,
Rayleigh's criterion will be proved mathematically. Assume that
P="r (m+gME,n) (5.2-1)
v=v(n,g,1) (5.2-2)
with g and ¥ << 1 while I = 0(1). When viscous and higher order terms are
dropped the basic, unsteady equation of motion reduces to Eq. 3.1-36.
1
1 azﬂw . 41‘*01"0 2

iZZSZ BTZ n

9 2‘2 =0 (5.2-3)
5E
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Since the equation is linear any general motion can be subdivided into separate

wave modes. Therefore, let

v = £(n) oi(kE 0D (5.2~4)

There also is no loss in generality in setting 7382 = 1 and (ro/R.)2 = 1 since
these parameters only scale ¢ and k. Under these conditions, Equation (5.2-3)

reduces to
|
4I'ol'o ] _152
2 14
no

ne" - [1- £=0 (5.2-5)

The question of stability now reduces to the problem of solving this
equation with appropriate boundary conditions on f, to determine the permitted
eigenvalues of 0 for any given k. If any k leads to a positive imaginary value
of o the flow will be unstable for this particular wave mode. However, for the

present problem a general condition for all wave modes can be determined.

Equation (5.2-5) can be multiplied by f/n and formally integrated between

two radial stations, say n = 1 and n = n, to give

1 1 2 2 2 e

1
££' - (f'2+%£)dn+52 0‘3 £ dn =0
n g n
| n

i i i

(5.2-6)

If the radial velocity is forced to be zero at N = 1 and ni’ as would be the
case for solid walls at these locations, then the first term in Eq. 5.2-6 is

zero and it can be rearranged so that

-1
T
| ‘oo f2 dn
2 /n, 2
6° _ i
2 1 2 2
K R
j (£'" + Z o ) dn ,
5.2-8
n, )
For k real the sign of 62 depends on the sign of beb', i.e.,
o = lo| %)
Therefore when dfz/dn <0 1/2
. 2
o =21 [lc(F)] (5.2-9)

and a part of the disturbance given in Eq. (5.2-4) can grow with time, i.e.
the flow is unstable. A somewhat more involved argument can be used to show

that the flow is, at least, locally unstable if dT2/dr < 0 anywhere.
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5.3 Flow between Rotating Cylinders

The simplest stability problem in rotating flow is the problem of motion
between concentric cylinders which revolve at different rates. As seen in the
previous analysis, Rayleigh's criterion says the flow is unstable whenever

12912 > rozﬂo . This simple criterion is based on inviscid flow and some
modification may be expected at low Reynolds numbers. Figure 5.1 shows the
stability boundary as a function of the Reynolds numbers of the two cylinders.
This boundary has been obtained both theoretically and experimentally (See
Greenspan, 1968) and the agreement is quite good. When the stability boundary
is crossed the flow does not become turbulent. Instead, the flow transitions
to another laminar flow that consists of toroidal vortex cells periodic in the
axial direction, Fig. 5.2a. This pattern of Taylor vortices remains axisym-
metric. Even after this singly periodic flow becomes unstable it transitions
to a third type of flow that is periodic in 0 as well asin z before a transition
to general turbulence occurs. Figure 5.1 does not indicate the point of

transition to turbulence.

Doubly periodic flow 4000
Q r.2<] Singly
Second i 4 periodic
hd ’ v
W‘ e 2500
Taylor “*"m-_\Z‘\._
boundary \.\\—
N Non-periodic
‘T // How
e
U DUV SR AR B F ) 1
T 0 - 2 4000
—4$000 2000 ) Q r 000
o O
v

Figs 5 . 1 Diffcrent regimes in circular Couctte flow from visual observations
(rough cylinders, ro/r{ = 1°-135; Vv = o"II cm?/sec), . (Coles, 1965)
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Fig. 5.2
(a) Taylor vortices hetween two con- (b) Goertler vortices in the boundary layer
centric, rotating cylindersInner cylin- on & concave wall )
der rotating, outer cylinder at rest; 7 () — base flow
dowidth of annular gap ;i — boundary layer _!hickn(‘ss
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For the case of the outer cylinder at rest, Schlichting (1968) says that
transition to turbulence is governed by a characteristic parameter known as
the Taylor number, i.e., the flow becomes turbulent whenever

3/2

Ta 2 400 (5.3-1)

n
I
—

with d = r -r,
o i+

The opposite case in which the outer cylinder, only, is rotating is much more
stable. Transition Reynolds number still depends on the spacing between the
cylinders, but in a different way than that implied by the Taylor number de-

pendence. When d/ri<< 1 the result reduces to that of Couette flow for which

the transition Reynolds number Qorod 7 2,000 independent of d/ri. This in-
AY] -
creases as d/ri increases and according to Dryden (1959) when 2(ro ri) I
+ oo
the transition Reynolds number is 65,000. Too Ty

Another flow closely associated with that of flow between rotating cylin-
ders with the outer cylinder at rest is that of a boundary layer on a concave
wall. Roll vortices of the same type as the Taylor vortices may form in the
boundary layer. These are usually called Goertler vortices. A sketch of

these vortices is given in Fig. 5.2b. This instability occurs when
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U_és §, 1/2

o2 2
rvalll oad 2 0.3 (5.3-2)
o
and transition when
U 6 §, 1/2
o D 2
5 ro] 27 (5.3~3)

with 62 equal to the momentum thickness of the boundary layer and ro the
radius of curvature of the wall (Schlichting, 1968). This corresponds to a

Taylor number based on 6, and r - The critical value for transition is

2
nearly two orders of magnitude lower than the corresponding transition Taylor
number for flow between rotating cylinders, but this is fairly consistent with
theoretical predictions which also predict a much lower stability limit for

the onset of Goertler vortices.

Axial velocity gradients may introduce instabilities into the flow be-
tween rotating cylinders. Howard and Gupta (1962) have shown that a necessary

condition for inviscid stability of axisymmetric disturbance is

sz/dr

3(@_2
r dr

1
7y (5.3-4)
This criterion is analogous to the condition that the Richardson number,

(g dp/dx)/ p(dw/dx)2 exceed 1/4 for a stratified flow to be stable in the

presence of a gravity field. The proper extension to stratified rotating

flow is (Leibovich, 1969)

d(er?)

dr > >% (5.3-5)
%o (&Y
re dr

However, this is not a sufficient condition. The flow may be unstable
to nonaxisymmetric disturbances. Solutions for this more general stability
condition have only been obtained within the narrow gap approximation, i.e.
when (ro- rf /r0 << 1. Ludwieg (1961, 1964) has obtained the inviscid stabil-
ity diagram shown in Fig. 5.3 for this case. The experimental points appear
to indicate that the major effect of viscosity is to make the case of uniform
angular velocity stable for small axial velocity gradient where the inviscid
theory says that any finite axial veloecity gradient should lead to an instabil-

ity. Pedley (1969) has shown that this case of uniform angular velocity
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remains inviscidly unstable for finite axial velocity gradients even when the

inner cylinder is removed, i.e. r, - O.
. i

. | themretical
3 L limit of slsbifity ____|
el ; alfer H ludwieg
P
=~ Paw |
”H —— . - }
yar . experimental o
fmit of stagitiy 5 i
2 . .« | gl 1
experiment !
o Sfable L e L
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Fig. 5.3 Experimental verification of the stability theory for flow between two cancentric,
rotating eylinders with axial motion superimposed, after H. Ludwieg(1964 )

R=(R,— R w;/v =630

Shaded arca: experimentally determined limit of stability

The extension of Ludwieg's diagram to include the influence of dersity
gradients as done by Kurzweg (1967, 1969) is shown in Fig. 5.4. A positive
gradient of density with radius increases stability and a negative gradient

decreases the region of stability.

+—————RADIAL INFLOW — | «—RADIAL OUTFLOW —»
DIMENSIONLESS RADIAL GRADIENT OF DENSITY,
10— C, = (dp/p) 7 (dr/n)
UNSTABLE ASYMPTOTE
FOR Cp- 0
o VY \
~ /\.0.1 9 0 -0
W 0.5
STABLE STABLE
0
4 1 2 3

v+ 1
Fig. 5.4 Influence of density gradient on Ludwieg's
stability curve, (Kurzweg, 1967)
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5.4 Flow in the End-Wall Boundary-Layer

Confined vortex flow is usually considerably more complicated than the
flow between rotating cylinders. In particular, the flow is complicated by
the end wall boundary layers which have characteristic instabilities of their
own. Some ideas on the conditions leading to transition in these boundary
layers may be obtained by looking at the results of investigations into the
stability of Ekman layers. The boundary layer on the axial end walls of a
vortex chamber may be viewed as a nonlinear Ekman layer with the Rossby number

of order 1 or larger. Here the Rossby number is defined as
v

g =L

o~ Qr (5.4-1)
with Vl the difference between the tangential velocity outside the boundary
layer and that of the wall. The principal results of Ekman-layer stability
investigations, as summarized by Greenspan (1968) are given in Fig. 5.5, Two
distinct types of instabilities have been detected. The waves of both families
form a series of horizontal roll vortices whose spacing is related to the depth
of the boundary layer. Transition to gemneral turbulence occurs at a Reynolds

number somewhat higher than that for the onset of instabiltiy.

Classes A, B unstable

140

130 Rfsn) = 124'5+3'66 e 0
120

110

100 Class A unstable

RE = vlé/v

90
80
70
60
50
| !
02 04 06 08 10 12
R = e= Y
o ir

Fig. 5.5 The critical Reynolds numher vs. Tossby
number for Class A and Class B instabilities in an
Ekman boundary layer. (Tatro and Mollo-Christensen, 1967).
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The results of Fig. 5.5 can be used to estimate the transition Re, for

flow in the end wall boundary layer of a vortex chamber. For a stationary

end wall
R 21
(o]
vV, ~ T/r (5.4-2)
1/2
v
§ . [F] r
V.¢$
Therefore '1 2 125 whenever 2
v r Vld 2
Re, =5 =(5) 2 (125) (5.4-3)
i.e.
4
Ret 2 1.5x10 (5.4-4)
(crit)

This suggests that the end wall boundary layer will transition from laminar to

turbulent flow where Ret is much above 10 .

It is not surprising to find that the oscillating profile distributions of
the Ekman layer lead to instabilities at lower Reynolds numbers than do the
monotonic profile distributions associated with a rotating disk. The flow
field of a rotating disk becomes unstable when (Schlichting, 1968)

2
2L 2 1.9x10°

Ret

and transition occurs when

Ret 2 2.8xlO5

In terms of the Reynolds number based on the boundary-~layer thickness as in
Fig. 5.5 this corresponds to dvl/v = 550 for the stability limit and 670 for
transition. The instability in the rotating disk boundary layer is of the

same type as the Class B in Fig. 5.5.
5.5 Stability in a Confined Vortex

The general flow pattern for a strong vortex as represented by Fig. 3.13
is too complicated for the prediction of general stability conditions, but some

indication of the expected transition Reynolds numbers can be obtained from the
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preceding sections. When the external boundary condition is a rotating, porous
cylinder and there is radial inflow, turbulence probably first appears in the
end wall boundary layers. According to the last section this should occur
when

Re, 2 10° (5.5-1)
Also, transition may be expected at a rather low Ret in the region of r > r when
the necessary condition on the Richardson Number is violated, i.e. transition
should have occurred when

2 2

dw dr
(dr) > 4 e (5.5-2)

Since the approximate solution discussed in Section 3.5 calls for significant

3
r

axial velocities in this region of r > r while at the same time calling for T

to be essentially constant, flow in this region may be expected to be unstable.

These speculations are confirmed by Travers' (1965, 1967) experimental
investigations. By taking microflash pictures of dye filaments in a water
vortex, he was able to observe clear demarcations between regions of turbulence
and apparently laminar regions and to identify the dividing line with the
radial stagnation surface. An example of these photographs is reproduced in
Fig. 5.6. For the conditions of the photograph (Ret z lxlOS, N =30, and
L/D * 3) the end wall boundary layer should be turbulent and the r based on
turbulent boundary-layer calculation (see Chapter 6) falls close to the de-
marcation line between the laminar and turbulent region. This division of
turbulent and laminar regions by the radial stagnation surface was observed
for all tangential Reynolds numbers tested (Ret = .5 to 2.5 x 105) whether
the vortex was driven by rotating the peripheral wall, by injecting flow
tangentially through slots, or by injecting through a large number of dis-

crete jets.

Travers and Clark (1968) also demonstrated that a vortex with radial
outflow is more unstable than that for radial inflow. A one inch diameter,
porous tube was installed in the center of the vortex discussed in the last para-
graph and also provisions made to rotate either the central tube or the end
walls. For small amounts of outflow (-N < 100) the flow was turbulent for
£z 0.3 r, and laminar for smaller radii when both the inner tube and the end

walls were stationary (Ret was varied from 1.2 x 104 to 3.2 x 105 for these
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Fig. 5.6 Microflash photographs of dye patterns for a vortex driven
by tangential injection thru a single slot with Re = 120,000,

N = 30, and L/D = 3 (Travers, 1965).

experiments). Rotating the inner tube at an angular rate equal to that of the

outer cylinder made the flow turbulent over all the
walls had a stabilizing effect for sufficiently low
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Fig. 5.7.
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In summary, the experimental results are consistent with theoretical
results for the basic vortex configuration with radial inflow. However, for
radial outflow, where the steeper circulation gradient may have been expected
to stabilize the flow, the flow is unstable. It appears that either the
radial outflow itself is destabilizing because of the adverse pressure gra—

dient, or the flow pattern forces the turbulence generated in the boundary
layers out into the main flow.

5.6 Vortex Breakdown

Vortex breakdown is the name given to the abrupt and rather drastic
change in structure which often occurs in a well defined vortex core. The
phenomenon first gained attention in connection with delta-wing leading edge
vortices. It has since been recognized to occur under certain conditions in
many other situations including the core region of confined vortices. A brief
review of pertinent experimental observations associated with breakdown and
some of the theories that have been given to explain the phenomenon is given

in this section. Also, conclusions relevant to confined vortices are made.

A review of experimental observations has been given by Bossel (1967).

The broad conclusions to be drawn from these are:

1) The swirl angle of the flow must exceed a certain value before breakdown
may occur.

2) Breakdown is always associated with an adverse pressure gradient along
the axis.

3) Reynolds number and Mach number effects play a minor role.

4) As swirl is increased in a vortex tube a stage is reached where a bubble
of recirculating fluid with a stagnation point appears on the axis. At
still larger values of swirl the bubble proceeds upstream until a two-
celled vortex is established in the tube.

5) Breakdown may be either an axisymmetric or a spiral character as shown

in Fig. 5.8.

Theories offered to explain breakdown approach the problem in three
distinctly different ways; as a stability problem, as a large amplitude wave
standing in the flow, or as a natural separation of the flow from the axis as

it undergoes a transverse pressure gradient.
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Fig. 5.8 Vortex breakdown over a delta wing, showing
both the axisymmetric and the spiral mode of breakdown
(From Lambourne and Bryer, 1962)

The stability approach has been pursued by Ludwieg (1960-1964) and Jones
(1960). Some of Ludwieg's results are summarized in Fig. 5.3. His basic prem-
ise is that when a swirling flow crosses the stability boundary, any distur-
bance must grow until the flow transforms into a stable pattern or breaks up
into turbulence. This theory appears more relevant for the spiral breakdown
mode than the axisymmetric since it is the spiral disturbances which the theory
predicts should be amplified. Note that the swirl angle ;max does not affect
the stability boundary as much as the velocity gradients do. In fact increas-
ing zﬁax for the same velocity profiles would make the flow more likely to be
stabYe. This runs contrary to observations. On the other hand, the strong
axial velocity gradients observed immediately upstream of the breakdown stag-
nation point do tend to make the flow in this region cross the stability bound-
ary (Hummel, 1965). These facts suggest that Ludwieg's instability mechanism
is not the primary cause of breakdown, but may play an important role in the

subsequent development.

The analysis of breakdown as related to a wave phenomenon was first made
by Squire (1960) and improved upon by Benjamin (1962,-65,-66, and -67). These

analyses predict a swirl angle at which a standing wave can occur in the flow.-
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The derivation of this critical angle may be made in the following way begin-

ning with Eq. 3.1-19. In dimensional terms this equation may be written as

¢ +1 ¢ o1 ar?
vy 2y “zz dy 4y dy (5.6-1)

2
with y = r /2. If a primary flow with u =0, T = I'(y) and w = W(y) is to
support a small amplitude wave, the perturbation stream function, @, must

satisfy the equation

T '
~ 1 - ~
P += ¢y -|-XL- __X__]¢‘= 0 (5.6-2)
vy 2y "zz W 2y2W2
When a wave-like depencence of §(z) is assumed, i.e.,
. . ei)\z
V(y,2z) = ¥(y) (5.6-3)
then Eq. 5.6-2 transforms to
v - 12 + W TIT ~
yy 2y "7 T =I5 ) v =0 (5.6-4)
2y w

and the boundary conditions appropriate for flow in a tube are

2y =0 (5.6-5)

II)(o) =0, ¥ (% Ty
For given priﬁary flow distributions, Egqs. 5.6-4 and 5.6-5 lead to critical
values of (V/W)max which will permit a given wave length (1/X) to stand in
the flow. The lowest critical value is that associated with the longest pos-—
sible wave length, A = 0, Egs. 5.6-4 and 5.6-5 may readily be solved for a
Rankine vortex primary flow, v = qr (r < r*) and v = Qr*z/r (r > r*), with
uniform axial flow in terms of Bessel functions. The critical swirl parameter

in this case is given by

Qrk 20Qr*
v LG @M ry?
20r*, 2 (5.6-6)
JlGj;—ﬁ (r*/rw) -1

This yields values of Qr*/w between 1.2 and 1.9 as r*/rw varies from O to
1 as seen in Fig. 5.9. A somewhat more realistic circulation distribution is
the exponential variation given in Eq. 3.2-20. The critical velocity ratio
for this distribution is also plotted in Fig. 5.9 from numerical values given

by Leibovich (1970). The radius of maximum tangential velocity is still identi-
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fied as r*.

Critical values of swirl predicted by this wave approach are close to the
experimentally observed values for breakdown. A swirling flow with a swirl
angle less than critical is too fast to support a standing wave, and thus may
be termed supercritical. A deceleration of the flow will increase the swirl
angle and drive it towards the critical condition eventually reaching the
point where a large amplitude wave may stand. 1In this way, breakdown is
viewed as a transition from supercritical to subcritical flow in complete
analogy with the hydraulic jump. Benjamin (1966), Pritchard (1970) and
Leibovich (1969) have carried out weakly nonlinear wave analyses to predict
the breakdown bubble shape. Although their solitary wave analysis is not
valid for large amplitude waves which lead to stagnation of the flow on the
axis, they do appear adequate to show this approach is completely consistent
with the axisymmetric bubble breakdown observed by Harvey (1962), Fig. 5.10.

It cannot be readily extended to the spiral mode.

2.0

1.6+
Rankine

Vorte

Vmax- 1.21
W erit

Exponential
Critical Vortex
Velocity .8
Ratio
4
O ' ). 3
0 2 A .6 .8 1.0

Core I
Radius Tw
Fig. 5.9 Critical velocity ratio as a function of the core radius for a Ran~
kine vortex (Squire, 1960) and for an exponential tangential veloc-
ity distribution (Leibovich, 1970) with w = comst.
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Fig. 5.10 (plate 1). A photograph of vortex break-
down using an electronic flash Harvey (1962)

The breakdown may also be viewed as a natural stagnation of the center-
line flow leading to separation of the flow from the axis. As demonstrated in
Section 3.1, when the swirl parameter is large, small axial variations in
tangential velocity must produce large effects on the axial velocity. If the
tangential velocity increases with z as it would in an inviscid contraction of

the streamtube, i.e. as in vortex '"'stretching," the centerline velocity must

J
be greatly increased. Conversely, if the streamtube expands, 3% will be neg-
ative leading to a positive op along the centerline which retards the flow.

9z
For a given radial variation of w and v, there is a critical value of swirl
(v/w)max at which an infinitesimal expansion in the streamtube will lead to
stagnation on the axis. Hall (1966) shows that for an initial distribution
with uniform w and uniform @, this critical wvalue is(v/w)max = 1.9, the same
value as obtained in Eq. 5.6-6. This case can be worked out exactly because
the governing equation, Eq. 5.6-1, is linear. Hall (1967) has given a numeri-
cal procedure based on finite difference calculations of the quasi-cylindrical
equations for determining the critical conditions for more general distributions,
and including the effect of viscous diffusion. Due to the quasi-cylindrical
approximation, the numerical procedure can not be used through the breakdown,
but only to predict the conditions leading to breakdown. In all cases tested
the critical conditions are consistent with those obtained from the wave ap-

proach discussed previously.
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As calculated by Hall (1967), the influence of viscous diffusion on a
vortex core may serve to drive it toward the critical condition. Although

v is decreasing due to diffusion, for a range of swirl the interaction of
v
oz
to allow the effective swirl parameter in the core to increase.

a negative with w through the pressure may retard w at an even faster rate

Whether viewed as an instability, a large amplitude wave disturbance, or
as separation, breakdown appears to represent the leading edge of a transition
from a vortex with a monotonic axial velocity to one with a reversal in w as
observed by Harvey (1962) and So (1967) and others. This may be observed in
Fig. 3.11, where the swirling jet emanating from the end-wall boundary layer
adjusts to a vortex core with reversed flow. The bubble observed in Fig. 5.10,
although probably best analyzed as a solitary wave, represents the case when
the deceleration in the flow is not adequate to support complete transition

to a two cell flow.

The separation model of breakdown also provides some insight into the
difference between an axisymmetric mode of breakdown and the spiral mode. 1In
order for a smooth axisymmetric breakdown to occur it is necessary for the
total pressure in the center of the stagnation bubble to equal the total
pressure on the axis just upstream of breakdown. But, for an open-ended bub-
ble, the total pressure at the stagnation point of the bubble must be less
than the total pressure at the point where the reverse flow streamlines orig-
inate. Thus a necessary condtion for an axisymmetric breakdown should be that
the centerline total pressure be less than the ambient pressure to which the
vortex flow is exhausting. If the centerline total pressure is greater than
the downstream ambient pressure the centerline streamline can not be stagnated.
However, it is still possible for the spiral mode separation to occur since
in this case the point of separation from the axis is not a stagnation point

for the flow originating from upstream of this point.

As seen above, the theories all pretty well agree on the critical wvalue
of swirl, particularly in the case of the Rankine vortex for which the equa-
tions remain linear. For the more general case, it is not possible to say
how much the nonlinearity in Eq. 5.6-1 may reduce the critical value of swirl
required for breakdown,i.e. how supercritical the flow may be and still under-—

go breakdown.
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Aside from the visual pictures, little information is available in the
literature on the flow changes across the breakdown transition. The free vor-
tex often degenerates to general turbulence a few core diameters downstream
of the breakdown, but may remain organized as a vortex with a core of reversed
flow. In the case of a flow in a tube, the vortex is most likely to remain
organized, even if highly turbulent. It is interesting to speculate on the
size of the reversed flow core downstream of the breakdown. When the core
radius is defined as the radius of the dividing streamline between the flow
originating from upstream and that from downstream then it is analogous to r.
utilized in Chapter II. If the assumption is made that T, may still be deter-
mined by the same extremum problem, then it is equivalent to assuming that
breakdown supports the maximum possible pressure jump consistent with conser-
vation relations across the transition. Hawkes (1969) has worked out jump
conditions for some flow models based on this assumption. TFor the Rankine
vortex model used in determining the critical conditons in Eq. 5.6-6, he found

rc/r* 2 0.3 and Ap(O)/(va ax/2) equal to 0.22 and 0.75 for r*/rw equal to 1

m
and 0 respectively.

It should be noted that in setting the conservation relations across the
breakdown it is not possible to conserve both axial momentum and total pres-
sure. As shown by Benjamin (1962), if total pressure is conserved the inte-
grated value of axial momentum is greater for the subcritical flow with a core
than for the initial supercritical flow ahead of the breakdown. This difference
is balanced by the momentum associated with the waves in the subcritical flow.
Conversely, if these waves are assumed to breakup into turbulence it would
lead to a loss in total pressure with axial momentum conserved. There is
almost no difference in the above quoted values of rC and Ap(0) between the
case where axial momentum is conserved and that in which total pressure is

conserved.

In summary, the conditions leading to breakdown may be fairly well deter-
mined from available theories, but the structure of the flow following break-
down is subject to considerable speculation. In a confined vortex, breakdown
may be expected to occur at varying positions along the axis as a function of
swirl. TFor small values of swirl breakdown will not occur anywhere. For

moderate values of swirl which permit the flow at the minimum exhaust cross
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section to still be slightly supercritical, breakdown should occur downstream
of this cross section as flow expands, and becomes less supercritical (increas-—
es its maximum swirl angle). As the swirl is increased, breakdown will move
upstream towards the minimum exhaust cross section. When the swirl is suf-
ficiently large for the breakdown to move upstream of the exhaust the flow
becomes subcritical all along the axis and the breakdown must jump to the wall
opposite the exhaust where it is associated with the eruption of the end

wall boundary layer as in Fig. 3.12.

It can now be seen that Mager's swirl dominated solution for viscous ex-
haust flow in Section 3.6 is incompatible with the present model of break-
down., The transition from uniform axial velocity to a reverse-flow core

should not occur in the accelerating portion of the nozzle.

It is interesting to note that the present model of breakdown implies
that in order for tangential velocity to be much larger than the maximum
axial velocity anywhere in the neighborhood of the vortex exhaust the flow
must be subcritical. For subcritical flow, the core size is determined by
the extremum condition that mass flow be a maximum for a given pressure drop.
Section 6.5 contains an argument that this leads to a chamber instability
when the angular momentum flux per unit mass flow exceeds a certain bound so

that even in subcritical flow v can not greatly exceed w .
max max
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VI. TURBULENT VORTICES

6.1 Introduction

For the vast majority of applications of confined vortex flows, Reynolds
numbers of practical interest to engineers exceed those required for
transition to turbulence, at least, in some region of the flow. The formal
turbulent equations of motion can be obtained by decomposing the fluid
velocity, as well as the pressure, density, and enthalpy at any point, into
an average, mean part and a small perturbation that fluctuates irregularly
with time. The Navier-Stokes equations of motion may then be averaged over a
time interval that is long compared with the time scale of turbulent fluc-
tuations but short compared with the time scale of the mean motion. The
averages of different fluctuation products then form Reynold's stresses which
must be added to molecular stresses in determining the stress tensor 1 that
should be used in Egqs. 1.1-1.3. For example, for incompressible, steady mean

flow the Reynold's stress tensor in Cartesian coordinates may be written as

1 ] \
a}? G, 49,
- T 1 T2 1 _
Tr P qux qy quz 6.1-1)
] 1 1 T '
a4y a9y 9F

where the prime denotes the fluctuating part and the subscript denotes
velocity component direction and the bar denotes the time average. Little
success has been achieved in dealing with the general turbulent equations of
motion since the general dependence of the Reynold's stresses on the mean
velocity components and their gradients must be determined before the system

of equations is complete.

Even in turbulent flow, strong vortices can be divided into two regimes
depending upon whether axial or radial shear stresses are more important. As
seen in Chapter 111, axial shear may be expected to be important only in the
boundary layers imposed by axial boundary conditions which force a strong
axial gradient on the flow, e.g. in the end-wall boundary layers. Outside
of these layers, which can best be treated by boundary-layer methods a quasi-
cylindrical approximation is appropriate for the equations of motion. That

is, it is appropriate to assume that variations of mean values in the axial
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direction are small compared with the corresponding variations in the radial
direction. It follows from the continuity equation that the mean radial

velocity must be small.

The quasi-cylindrical equations for compressible, turbulent flow as
given by Hall (1966) are:

Continuity equation,

d3p , 1 Odrpu , 1 3(rp'u") Bdow _ _
ot + r or + r or + dz 0 (6.1-2)
Momentum equations,
2
pve _ 3p -
- Ny (6.1-3)
av v ov , uvy _ 13 oV _ ¥ _
St +tu BT tow 9z + r ) = or [r U( )] (6.1-4)
1 _3__ 2,77y _ 7,9V Vv
2 3r (rfpu’v’) pru (ar + r )
3w 3w dwy, _ _3p 13 3w -
p(at +u or tow 3z’ 9z + r or (ru ar) (6.1-5)
R S A oy SN A
T 3r (rpu'w') p'u -
and the energy equation
9H , 3 3K, _3p
PET P U TV 3 T Bt
109 9l
=;8—[;—rrar+———(Prl)r(v—r+w——)uv]
(6.1-6)
_1l3 Ty _ ST v oH 5139 v'ou' , du'
r or (FPu'HD) —pful ot gy grlurG gy v 5]

where

H=h+%(u2+v2+w2)+%(TZ+72+Fz)

H' = h' + uwd' + vw' + ww'
and Pr = ucp/k is the Prandtl number which is assumed not to fluctuate. Even
though mean values with respect to time have been taken in the derivation of
the above equations, the time variations of the mean quantities have been
retained, to admit mean motions which vary slowly with time compared with the
fluctuating components.

For incompressible flow, the energy equation may be decoupled from

[

Egs. 6.1-2 to 6.1~5 and the terms involving p'u and 3p/3t dropped. The
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tangential compomnent of the vorticity equation, analogous to Eq. 3.1-7, may
be formed by cross differentiating Eqs. 6.1-3 and 6.1-5 to give

2 3 3 _—

Thus the arguments of Section 3.1 deducing that the tangential velocity tends
to be independent of z when S? >> 1 still hold for turbulent flow. Under
these conditions the tangential momentum equation leads to

CAANERNCA AN L AU N B T CA

3t or r rZor T VW% T %D - u'v'] (6.1-8)

Before Eq. 6.1-8 can be solved it is necessary to relate u'v' in some
manner to the mean motion. Ragsdale (1961), Donaldson and Snedeker (1962)
and Kinney (1966) have attempted to do this with a mixing length approach.
However, most attempts at analyzing turbulent vortices have used an "eddy"
viscosity approach. That is, an eddy viscosity is defined such that

wWv' S - (2 - (6.1-9)

The sole justification for this approach is that it reduces the turbulent
equation to an equivalent laminar problem. This appears to be adequate justi-
fication until some other dependency of u'v' is more firmly established.
With the eddy viscosity approach it is still necessary to determine €p @ a

function of time and space.

Numerous attempts to relate ep to tangential Reynolds number have been
made. Figure 6.1 is a summary of some of these attempts. The standard
procedure is to compare theory and experiment and determine the value of €
which results in the best agreement. Part of the scatter of correlations in
Fig. 6.1 may be attributed to differences in the theories to which the
experiments were compared. The correlations of Keyes (1960), Ragsdale (1961)
and Donaldson and Smedeker (1962) compare experiments with Eq. (3.3-17)
without considering boundary-layer influences. Therefore they should be
expected to yield values of ET/v which are high. The line marked Modified
Ragsdale shows the adjustment which including the effect of the boundary
layer makes in reducing the same data. Thus even when allowances are made
for such differences, it seems clear that such a simple dependency for ¢

T
is inadequate.
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Fig. 6.1 The ratio of laminar radial Reynolds Number to "effective'
radial Reynolds Number as a function of tangential Reynolds
Number. The modified Ragsdale curve shows the influence of
boundary-layer interaction. (Newton, 1968)
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Rodoni (1969) has developed a 3 parameter correlation for eT/v. With
the theory of Rosenzweig, Lewellen and Ross (1964) used to compare with data
obtained from a number of investigators, values of effective ET/V were
determined. A computer program was then written to determine what values of
X, ¥, 2z would result in the least sum of the squares of the differences
between the data points and a straight line curve fit for 1n ET/v vs 1In
[Rer(l/D)xRety]z. (Here Rer is defined the same as N in Chapter III.) The
resulting correlation is given in Fig. 6.2 Although this correlation results
in a modest scatter it cannot be considered particularly useful. As pointed
out by Rodoni (1969) it may be interpreted as simply indicating that the
effective radial Reynolds number Rerv/eT can essentially be considered to
fall between 1 and 10 because this is the range of radial Reynolds number
where most of the variation in velocity distribution occurs (see Fig. 3.10,

for example).

The quasi-cylindrical equations have also been used to analyze the decay
of a trailing vortex. Owen (1970) argues that existing wind tunnel and full

scale flight data are consistent with taking

€1 » 1/2

— 1.4 (Re ) (6.1-10)

\Y t

max

provided that the turbulence has had time to reach a fully developed state.
This is a somewhat simpler problem with fewer dimensionless parameters to
affect the flow than in the confined vortex. Still it appears that the flow
should depend strongly on the ratio of convective velocity to maximum
tangential velocity, w/vmax' Owen accounts for this by considering the "age"
of the vortex, with Eq. 6.1-10 only applicable asymptotically. This

corresponds to requiring that vmax/w be much less than one.

6.2 Turbulent Shear Measurements

Kendall (1962) made direct measurements of turbulent fluctuations in a
jet-driven vortex for various flow rates at Ret from 105 - lO6 using a hot-—
wire anemometer. He found u' to be of the same order as v' and to vary from
2 to 10% of v. His measured values of -;T;T/vz correspond to ET/v
variations from 25 to 300. These fluctuating levels are about a factor of 3

below earlier measurements of Schowalter and Johnstone (1960) for a vortex
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Fig. 6.2 The ratio of the turbulent "eddy' viscosity to the molecular
viscosity as a function of /D, Rer, Ret. (Rodoni, 1969)

driven by a single large jet. Also Kendall found that using a rotating
porous wall the turbulent shear stress could be reduced to the same order of

magnitude as the laminar stress.

Ross (1964), in an attempt to measure turbulent shear without introducing
probes into the flow, developed a vortex chamber with which it was possible
to measure the angular momentum exhausting from the chamber by measuring the
torque exerted on a central porous tube that extracted the angular momentum
from the exit flow. Determination of the radial tangential velocity dis-

tribution thru differentiation of end wall pressure measurements then made it
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possible to estimate the turbulent tangential shear stress on any cylindrical
surface in the flow by applying an angular momentum balance to the control
volume defined by this cylindrical surface, the two end walls and the central
porous tube. The influence of the end wall boundary layers was included in
this balance. Values of u'v'/v? determined in this way were of the same
order of magnitude as those measured by Kendall at similar tangential
Reynolds numbers. The value of 8T/v evaluated by Ross in the region of the

vortex where I' is most nearly constant is included in Fig. 6.1.

These reports of large turbulent fluctuations tend to conflict with
observations of apparently laminar dye fronts in some vortices as seen in
Fig. 6.3 from Clark, Johnson, Kendall, Mensing and Travers (1967). These
apparent contradictions can probably best be interpreted as evidence of the
complex nature of turbulence in confined vortices. Regions of sharp positive
radial gradients of circulation should have a strong damping effect (see
Eq. 5.3-5) and thus ET/V should be expected to be a strong function of

radius in general.

Ret,j - 120,000, Rer - 100

Fig. 6.3 Typical dye patterns in water vortex tubes with radial inflow. The
large number of tangential jets used to drive the flow are visible.
Photograph was taken approximately 5 minutes after pulses of dye
were injected at the end walls. (Clark, et al 1967)

Direct turbulent shear measurements in confined vortices do not appear
adequate at the present time to support a detailed correlation of turbulence
with position in a confined vortex. It appears more useful to investigate
the nature of turbulence near the walls in the chamber to see to what extent
the wall shear may be decoupled from the general turbulence in the vortex

core.
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6.3 End-Wall Boundary Layer

The simplified momentum integral method outlined in Section 3.4 for the
solution of the laminar end-wall boundary-layer problem was also applied to
turbulent flow by Rott and Lewellen (1966). The wall shear laws assumed for

this purpose were
2
- pl VY, H -
Ty C1 = (Fg) (6.3-1)

and

= I (vryH -
Ty C2 0 T3 P6) (6.3-2)

This reduces to the laminar form when i.= 1. For the turbulent case i. may
be expected to lie between 1/4, the value for the Blasius shear law
(Schlichting, 1968), and u =0, the appropriate value for a rough surface.
The only other change necessary for Eqs. (3.4-11) and (3.4-12) to apply for
turbulent flow is to make appropriate changes in the velocity profile shape
constants. If the velocity profiles near the wall are assumed to vary as the
1/7th power of the distance from the wall, the appropriate values to replace

those given in Eq. 3.4-18 are

Al = 4.9, Az = 1.6 and A3 = 0.22 (6.3-3)
A comparison between the 1/7th power law and some measured radial velocity

profiles of Owen, Hale, Johnson, and Travers (1961) are given in Fig. 6.4.

Following the procedure outlined in Section 3.4, the generalized shear

laws, Egs. 6.3-1 and 6.3-2, lead to the following generalization of Eq. 3.4-22

- s (1-0) o
Q = k, v2{17rhl [[ r2 /% (Car/ds)] T O ds (6.3-4)
(]
with —
o= 2 (6.3-5)
2 (14u)
and
— A o-1
-0 -1 3+2 2 2 1
K, =0 ° (cp )% [L_ET + 2] (6.3-6)
2+u 3 17173
For a potential vortex, I = const, over a flat disk, dr/ds = -1,
Eq. 6.3-4 reduces to
~ o 2(1-0).,20-1 1/o g
g = 0% Ky v 207y 1 pyp )19 (6.3-7)
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SYMBOL Re Re r/R §, - IN. PROBE

to r G}
o 0.90 x 10° 114 0.425 0.224 PRESSURE
o 0.90. % 10° 114 0.200 0.180 HOT WIRE
v 1.03 x 105 317 0.425 0.214 PRESSURE
a 1.03 x 10° 317 0.200 0.275 HOT WIRE

— — = Profile assumed for profile constants of Eq. 6.3-3
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Fig. 6.4 Radial velocity profiles measured in a turbulent boundary layer.
(Owen, et. al. 1961)

m



and the definition of the boundary-layer interaction parameter may be

generalized to 20-1
Y Ret %o
B = 20 K2 e T (6.3-8)
T

~

As discussed in Section 3.5, a radial stagnation surface, r, can occur
when all of the flow passing thru a vortex chamber reaches the end-wall
boundary layers. For a chamber with 2 equal, end-wall boundary layers this

can occur when .
O 1 m
Q (r) = 2 7o (6.3-~9)

Equation 6.3-7 may be combined with Eq. 6.3-9 to give

=[1-3819° (6.3-10)

H|H>

o
The experiments of Travers (1967) discussed in Section 5.5 provide a
convenient check on this turbulent boundary-layer theory. Figure 6.5 gives
a comparison of Eq. 6.3-10 for E-= 1/4 with his observed values of ;. For
the case of the rotating peripheral wall where the experimental boundary
conditions correspond closely to those assumed at r = T, in the theory, the
agreement is fair. The experiment with the jet-driven vortex involves a
coupling between the cylindrical side wall boundary layer and the end wall

layer which apparently causes r to fall well inside of that predicted.

The uncertainty surrounding the proper constants in the shear law of

Egs. 6.3-1 and 6.3-2 makes it appealing to deal with a simplified coefficient

of friction approach, i.e. U =0 and Cl = Cf/2. This leads to
2mA,C pl r v T
_ 1 f oo _ _0 _o _
Be " — = Ale i) (6.3-11)
m o
and N
r=1-1/B (6.3-12)

The solid curve on Fig. 6.5 shows that Eq. 6.3-12 agrees very well with
the experiment if Cf is defined so that B remai?75the same for both curves.
i Cf = 0.054/Ret (6.3-13)
For r < r the boundary layer may be expected to dominate the core flow.
Anderson (1961) and Rosenzweig, Lewellen and Ross (1964) have provided
numerical solutions of the interaction of the present turbulent boundary-

layer flow with a core flow that is assumed laminar. This interaction can be

reduced to apn analytic solution when N -+ =, 1In this case the boundary-layer
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Fig. 6.5 The normalized radius of stagnation as a function of the

boundary-layer interaction parameter (B) .

PN

flux must remain essentially constant for r < r and the tangential momentum

equatéon for the boundary layer can be inverted to solve for TI'(r).

2
Ty = Ei- %?‘and Q = constant, Eq. 3.4-11 reduces to
L dr _ Ale ~ ZWACfp
Z - ~ -
A 2300 aae)

In terms of B, this can be integrated to give

/T = B f}-+ const
o

-2,
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With I* = 1 at r = r this constant can be evaluated to give
A, =1
- 1__ r =1 - -
= A1‘2+B(1T£_) forr<r 1 1/B (6.3-16)
r
o

g

Equation 6.3-16 is compared with the numerical solutions in Fig. 6.6. It

indicates that the result expressed by Eq. 6.3-16 should suffice for Rer 2z 10.

ANALYTIC, Re;, — @

— —— NUMERICAL, Re, = 10 |[---—
—-'—NUMERICAL.Re, = 50
| Lo mmemeacne - 50 |
! |
Lot
o} o2 04 06 o8 10

Fig. 6.6 The circulation distribution T in a driven vortex
as a function of the radius, for two different
cases of strong boundary-layer interaction {(charac-
terized by the parameter B). Numerical solutions
are taken from Rosenzweig, Lewellen and Ross (1964).

Anderson (1961) worked out the turbulent boundary-layer interaction in
which is directly proportional to B,
B =0.13 BT (6.3-17)

The solutions of Anderson and that of Rosenzweig, Lewellen and Ross are

terms of a parameter, BT’

essentially similar. The major difference is the treatment of the boundary
conditions at the exhaust. Rosenzweig, Lewellen and Ross permitted an
arbitrary fraction of the flow in the end-wall boundary layer at the edge of
the exhaust to be returned to the core flow before exhausting from the
chamber, while Anderson assumed all of the boundary-layer flow exhausted
directly thru the exhaust hole. This difference does not affect the large

Reynolds number solution given by Eq. 6.3-16.
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Wormley (1967) also has obtained numerical solutions for the interaction
problem. Based on observations in a small L/D chamber, he postulated a model
with the circulation constant outside of a stagnation radius and all of the
radial flow restricted to the boundary layers for r < ;. His solutions are

given in terms of a parameter BLC* which is closely related to B.

"o Yo s
u

(u 2
(o} (o]
2v

with f equal to the friction factor which would be .0225 for the Blasius

1/4 (6.3-18)

shear law. His results for T agree with Eq. (6.3-16) with the relationship

between B and BLC* having a slight dependency on uo/vo.

Somewhat more approximate treatments of the turbulent end-wall, boundary-
layer problem have been made by Schultz-Grunow (1935), Bauer (1968) and
Bichara and Orner (1969). These approaches are essentially equivalent to a
quasi-one-dimensional analysis in which the losses caused by shear to the end
walls are averaged over the total flow at each radial station. The angular

momentum equation may be written in this approximation as

C
ar _4mp £ -» _
ar ﬁ 5 T (6.3-19)

In general this can be expected to give a good approximation for the radial

variation of I' when appropriate choices of C_. are made since it only varies

f
by a proportionality comnstant from Eq. 6.3-14. Consequently these approaches
should be valid for determining the radial pressure distribution across the

vortex but give no indication of the strong effect of secondary flows on the

streamline patterns within the vortex.

Figure 6.5 can be taken as support for the C_ variation in Eq. 6.3-13

£
when the circulation remains constant. Determination of an appropriate Cf
for the more general case is still uncertain. Figure 6.7 is a comparison
of Eq. 6.3-13 with integrated torque measurements by Ross (1964). It

indicates that a stronger dependence on Re_ would be required to agree with

t
his measurements. A stronger dependence was also indicated by the correla-
tion obtained by Rodoni (1969) by comparing the circulation ratio between

the edge of the exhaust and that near the outer radius of the chamber,
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Fig. 6.7 End-wall shear stress coefficient, c, vs tangential Reynolds number
Ret based on the principal circulation in the chamber. (Ross, 1964)
Fe/FO, reported by a number of investigators with that obtained by integrating
Eq. 6.3-19. His correlation is given in Fig. 6.8. A rather unexpected

strong dependence on L/D is indicated.

An even stronger Reynolds number dependence was needed by Bichara and
Orner (1969) to make their numerical results agree with experiments. They

used

C, = 2.9/(Re, )+ 405 (6.3-20)
i
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Fig. 6.8 The variation of the effective end-wall skin friction
coefficient with L/D, v/u, and Ret. (Rodoni, 1969)

Another view of the L/D dependence observed by Rodoni is given in
Fig. 6.9 which compares Eq. 6.3-16 with experimental values of Fe/Po. The
theory indicates that the only dependence of Fe/FO on L/D should be accounted
for in the linear variation of B with D/L, but the experimental variation is
a much weaker dependence of I‘e/l"o on L/D. In Fig. 6.8 this shows up as a
variation of Cf with L/D. Perhaps the most appropriate interpretation is
that there is a coupling between the shear losses on the wall and the

general turbulence in the chamber.
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Fig. 6.9 The circulation ratio as a function of L/D, r /ro, and the
boundary layer interaction parameter for incompréssible flows.

6.4 Cylindrical Wall Boundary Layer

Since the confined vortex is usually driven by tangential injection of
fluid near the outer wall it is necessary to consider losses that occur due
to shear on the cylindrical wall. This problem was considered for laminar
flow in Section 3.8. Equation 3.8-1 may be applied to turbulent flow if
T, is interpreted as the turbulent wall shear and p in the last term is
replaced by eT.. o oT

m Pi =m FO + 2ﬂr§£rw - 2ﬂroE€T ;;9 (6.4-1)

The difficulty in applying this equation, of course, is involved in the uncer-
tainty in these two parameters T and Epe Most attempts at semi-empirically
determining the jet recovery factor, Po/Fi, have neglected the last term

involving € Thus implying that the wall boundary layer can be decoupled

T
from the vortex core.
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Kendall (1962) estimated values of Fo from end wall pressure distrib-
utions and used Eq. 6.4-1 with the last term neglected to determine T On
this basis he found T to be only about 10% above that which would be
predicted for turbulent flow over a flat plate at the same Reynolds number

based on the peripheral path length, 2nr0, and the wall velocity, Po/ro.

Cc
With T, = Eﬁ o vo2 and the last term neglected, Eq. 6.4-1 may be

written as

I‘0 1
— = T (6.4-2)
'y 1+t 2
2 u
o

Alternatively when all of the flow is introduced tangentially, with no com-—

pressibility effects

o _ of _o__w’'o _
T A, . T, (6.4-3)

and Eq. 6.4~2 may be written in the form given by Roschke (1966)

1/72_
T, } [(2 Ce Aw/Ai) + 111/21 6.4mt)
r. C_ A /A, :
i f wi

Equation 6.4-4 is plotted in Fig. 6.10 with a number of experimental
points from various investigators reviewed by Rodoni (1969). The general

trend of the curve is supported but a wide variation in C_ is required to

f

explain the scatter in the curve. A correlation of Cf as a function of

tangential Reynolds number based on a comparison between this figure and

Eq. 6.4-4 shows that it is equivalent to setting

0.29
Ce = Re U275 (6.4-5)

This is substantially different than that which would be predicted by the

Blasius expression for a flat plate of length 27r_, i.e.
¢ - 0.052 °

. 2
f Ret

(6.4-6)

The large values of Cf obtained cannot be explained in terms of the €r

term which was neglected in reducing Eq. 6.4-1 to 6.4~4. Including this term

would only serve to increase the empirical values of C,. since it represents

£
angular momentum which is transmitted by shear in the fluid radially outward
to the cylindrical wall layer. One reason for the higher values of Cf is

that local jet velocities may be much higher than the vy which is used in the
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Fig. 6.10 The recovery factor as a function of Aw/Ai with Cf as a
parameter. (Rodoni, 1969)

definition of Cf. A better correlation is obtained if the wall velocity is

assumed to vary from Vi to v, in one pass around the periphery. In this case

(Felsing, Mockenhaupt, and Lewellen, 1970)

-C
mdv =-—5£ IR v2 27edr (6.4-7)
which may be integrated to give
T C.v C_A
o _ _f di.-1 fw.-1 _
I‘.'[l+2u] —[1+2A-] (6.4-8)
i c® i
£

This is equivalent to setting T =3 Py Vo ¥y in Eq. 6.4-1. Equation 6.4-8
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is compared with some experimental points in Fig. 6.11. The scatter is
reduced from that in Fig. 6.10. A value of Cf given by Eq. (6.4~6) may be
used in conjunction with Eq. 6.4-8 to give a reasonable estimate of PO/Pi,

particularly at moderate values of Aw/Ai'

1

I
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o

r
Tél Eq. 6.4-8 \\\
i f— with C. = 0.005 . o
Data from Rodoni, 1969 \g
0.1 AN
-
-
r_
Lo bl Lol | |
10 102 vilug = Ay/A; 103

Fig. 6.11 Jet recovery factor as a function of velocity ratio, or equiva-
lently the ratio of wall area to jet injection area.

A strictly empirical correlation for the recovery factor obtained by
Rodoni (1969) is given in Fig. 6.12. The data scatter shows little improve-
ment over that in Fig. 6.11 considering the large number of exponents which
were allowed to vary in obtaining the correlation. It does have about the
same relationship between A_W/Ai and Ret which would be predicted by the
preceeding angular momentum balance. In addition it shows a dependence on

overall chamber geometry including the exhaust geometry.
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Fig. 6.12 The recovery factor as a function of re/ro, L/D, Aw/Ai’ NH’ and
Ret (Rodoni, 1969).

The dependency on exhaust geometry can best be interpreted in light of
the argument of Section 6.5. If the angular momentum per unit mass flow is
bounded by the exhaust constraint, then an injection arrangement which
introduces angular momentum per unit mass flow larger than this bound must
necessarily result in large dissipation on some of the walls within the
chamber. The ratio of cylindrical-wall losses to flat-end-wall losses is

determined by the injection geometry and the L/D of the chamber.

Little is known about the influence of compressibility on the recovery
factor. Keyes (1960) indicated that the recovery factor was a strong
function of injection Mach number as seen in Fig. 6.13. However, in his
experiments Keyes held the product of the mass flow times the square of the

injection Mach number to be constant by changing the injection area, such
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that the velocity ratio v/u is being varied. Thus Keyes variation with M
is quite consistent with Eq. 6.4-8 and no direct conclusions regarding

injection Mach number dependence can be drawn.
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Fig. 6.13 The recovery factor as a function of the Mach
number of injection with p sz fixed.

6.5 Exhaust Constraint

In Chapters 2 and 3 the strong influence of swirl on the relationship
between flow and pressure drop for a given exhaust geometry was discussed.
To see how this relationship may be coupled with turbulence in the chamber it
ig useful to replot Fig. 2.3 to present mass flow as a function of angular
momentum as given in Fig. 6.14. It may be observed that angular momentum
flux is a maximum for intermediate values of swirl. The shape of this curve

suggests (Lewellen, Burns and Strickland, 1969) that it may be impossible to
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operate the exhaust flow stabily at values of the swirl parameter o > & with
& defined as that wvalue which corresponds to the maximum value of angular

momentum. This speculation is supported by the following stability argument
which shows that a vortex chamber will have an inviscid instability when o is

slightly larger than a.

1.0 - —
—
S~
~
_ 0.8 N\
r, O )
£2ﬂpwrdr 0.6 /
ﬂfi [2pAp]I72
0.4 yd —— Potential flow
e (from Fig. 2.3)
e -~ T e« Y with P, = const.
0.2 I -~ (from Fig. 3:20)
-~
-~
O 1 A 1 — §
0.1 T 0.2
j pwvr2nrdr
I = 2©
=
21Tre Ap
Fig. 6.14 Dimensionless exhaust flow as a function of angular

momentum flux

A necessary condition for inviscid stability can

ering the dependence of chamber flow on wall pressure.

from an equilibrium operating point the instantaneous

be obtained by consid-
For small disturbances

rate of change of wall

pressure with time should be proportional to the difference between the mass

flow into the chamber and the mass flow out, i.e.,

=C (min - mout)

Bpw

ot

(6.5-1)

where C is a positive constant which would be a function of geometry and the

equation of state of the fluid. For small changes ﬁin and iout may be
approximated as ' ' 3ﬁin

m, = m(0) + i, [p, = P,(0)] (6.5-2)
and . . 3ﬁ0ut

Toue = DO g [py = Pu(0)] (6.5-3)
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Equations 6.5-1 thru 3 may be combined to give
apw Bmin amout
~— =C [
ot

5, ) (B = B (O] (6.5-4)

If a perturbation in P, is to damp out and the flow be stable, it may be

seen from Eq. 6.5-4 that it is necessary to have

om om,
out in
Bpw op

(6.5-5)

w

The stability criterion given in Eq. 6.5-5 may be related to the QL)
curve of Fig. 6.15 by first normalizing with respect to the mass flow thru
the chamber which would exist at the same wall pressure, ambient exhaust

pressure, density and exit area if there were no swirl, i.e.

= mout
= — (6.5-6)
U akp p,A_)
w?Pa?P Bl no swirl
and .
= min
Qin = (6.5-7)

m(pw’pa’p’Ae)no swirl,

then by noting that for inviscid flow with no dissipation within the chamber
p

®
Zlo>
Hlsﬂ

L= ]ain (6.5-8)

°|

i

R

e
when all of the flow is injected tangentially into the chamber at radius r,
at a density Py thru an injection area Ai. At the equilibrium point Eq.

6.5~5 may now be written as _ _
aQOut aQirl

3P, p,,

v

(6.5-9)

For a given vorticity distribution in the exhaust, Q is a function only of

out
L, thus Eq. 6.5-9 may be written with the aid of Eq. 6.5-8 as
dQ in 5L d(In p/p )

Q
out 9L -
—_—— _—_ = 3 Q4 - == (6.5_10)
dL apw 2L apw in apw

All of the derivatives with respect to P, in Eq. 6.5-10 should be negative,

so that it is equivalent to

= Q. 3(1ln p,/p )
gg < in L 6 ¢ i've oL
Bpw

dL ~ 2L in 3p,, ) (6.5-11)
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From Fig. 6.14 it may be observed that dQ/dL > O for o > 6 and in fact
dQ/dL » + = as o is decreased towards &. Thus there will always be a region
of @ > & in which the condition given in Eq. 6.5-11 is not satisfied. For
incompressible flow with no dissipation of angular momentum within the
chamber, the criterion given in Eq. 6.5-11 reduces to

L
Q

It is not possible to say that all operating points on Fig. 6.14 with o > o

(6.5-12)

are necessarily unstable but there must be a region of a > a which corresponds
to unstable operating points. A bound on a imposes a bound on v [w

max' max
elluded to in Section 5.6.

Roschke (1966) has carefully documented flow distributions in an incom-
pressible vortex for a number of different values of re/rw, L/D, and N.
The value of o, based on the maximum value of v and the difference between
the total pressure at the wall and atmospheric pressure to which the flow is
exhausting, is plotted in Fig. 6.15 as a function of N. Although there is
some scatter to the data, a constant value of o ax % 0.6 is indicated. If
constant total pressure is assumed, this corresponds to v/w = %—at this

point.
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Kolf (1956) developed an empirical relationship for the effect of swirl

on the discharge coefficient, C for free-surface flow of a liquid thru a

D!
thin-plate orifice. He found

CD = 0.686 ~ 0.218 V' (6.5-13)

where V' is defined as the ratio of the circulation (27rv) at twice the
orifice radius divided by the product of the orifice diameter and the average
thru flow velocity thru the exhaust. In terms of the notation of Eq. 6.5-13
this parameter which has been referred to by some of his colleagues as the

Kolf number may be written as

ol
V' = 2% o (6.5~14)
T _
e Q

A plot of a large number of data points from Zielinski and Villemonte (1968)
is given in Fig. 6.16. Since F2r /Fe must always be greater than or equal to
1, it may be seen that a/Q was al%ays less than 1 for the wide variety
geometries and fluids tested. Although unrelated to the present argument it
is also interesting to note the departure of the data from the correlation
for small swirl. This is probably a result of the low CD for the no swirl
condition. Initially the swirl can reduce the separation of the flow from

the thin orifice enough to counterbalance the effect of reducing the center

pressure.

A limit on swirl angle in the exhaust should also show up as a constraint
on core radius rc/re. The core present in our idealized inviscid exhaust
model is highly distorted by momentum diffusion. The readily observable
experimental parameter which is more closely related to T, is the radial
position of the maximum tangential velocity, I, . For short chambers,
i,/re = 0(1) these two should be closely related max while at large values of

l/re, momentum diffusion should permit the angular momentum to penetrate to

smaller radii at the chamber wall opposite the exhaust. Figure 6.17 is a

plot of re/rV as a function of Z/re for available incompressible data

(Mt < O.6??x The correlation is quite reasonable when allowances are made

max ‘s . . - .
for the difficulties in obtaining accurate experiment values of T,

. . . max
Note that T, is determined from end wall pressure distributions

. max . .
and thus is being measured at the wall opposite the exhaust.
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Fig. 6.16 Coefficient of discharge versus Kolf number
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function of 2/r for various values of N and re/rw. Data

taken from Roscﬁke, 1966.
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The experimental evidence for a stability limit on swirl in the exhaust
also is evident for compressible flow. In this case, a bound on the swirl
angle in the exhaust implies a bound on tangential Mach number, Mt' Lewellen,
Burns and Strickland (1969) predicted a maximum Mt of 1.2 for vy = 1.4,

Several investigators have found experimentally that Mt reaches a limit as

the pressure ratio across a vortex chamber is increased as illustrated in

Fig. 6.18. Roschke and Pivirotto (1965) reported an Mt max - 1.05, Toomre
(1963) a value of 1.03 and Pinchak and Poplawski (1965) reported an Mt max
= 1.18 in a vortex chamber designed especially to circumvent the difficulties
of end-wall dissipation. There are two reported cases in the literature of
Mt exceeding the value of 1.2. Keyes (1960) shows a tangential Mach number
distribution obtained in a l-inch-diameter tube that reaches a value of 1.4
near the center and Gyarmathy (1969) reports a value of 1.6 for essentially
the same set up as used by Pinchak and Poplawski. With these notable
exceptions the experimental evidence tends to confirm the speculation that

flows with M2 1.2 would be unstable.

1.2 I
1.0
M
. B
max
S O All of the flow exhausting
thru the central exit
6 A4 I 1/2 the flow exhausting
thru a peripheral exit
1 | 1
0 100 200 300

Injection Manifold Pressure (psig)

Fig. 6.18 The variation of the maximum Mach number with
the injection manifold pressure [Poplawski and
Pinchak, (1965)].

129



How does this bound on angular momentum flux thru the exhaust affect
the turbulence generated within the chamber? The complete relationship is
unclear at the present time. However, a recent paper by Cassidy and Falvey
(1970) contains a possible clue. They found that the vortex becomes unsteady
with the vortex core moving in a helical pattern when the angular momentum
flux is sufficiently large relative to the flux of linear momentum. Figure
6.19 is a plot of their observed frequency as a function of the momentum
parameter. The pressure flucuations were felt throughout the flow, even in
the upstream plenum. The frequency falls off to zero somewhere around
L/mQ% = 0.2. The profiles used in obtaining Fig. 6.14 lead to maximum values
of L/ﬂ(—z2 = 0.14 and 0.23 for T=y and for potential flow, respectively. Thus
it appears that when the maximum values of L indicated in Fig. 6.14 are
exceeded the flow becomes unsteady. Additional angular momentum can then be
carried by the vortex core spiraling around the axis of the flow. It is
clear that all of the angular momentum which enters the chamber must either
be dissipated as torque on the intermal surfaces of the chamber or flow thru
the exhaust. Any upper bound on the fraction of angular momentum flux
passing thru the exhaust then must imply a lower bound on the fraction of
angular momentum dissipated by torque on the wall. If the torque on the
walls which would be obtained with local wall induced turbulence is below
this lower bound, then the unsteadiness induced by the exhaust constraint may
act to increase the general intensity of turbulence within the chamber to

result in an increase in wall torque.

If the dissipation in a vortex chamber is to be completely controlled by
the exhaust constraint, then the combination of Egs. 6.5-13 and 6.4-3 would
give the ratio of the circulation of the edge of the exhaust to the ideal
injected circulation as a function of geometry only.
r A,

i

(6.5-15)

7
P m

mr ¥
w e

Ol e

Figure 6.20 gives a correlation obtained by Rodoni (1969) for Fe/Fi.
Although this correlation does retain a rather strong dependence on Ret it
does indicate that there is a flow mechanism coupling the interior flow with
the flow near the walls. It also indicates that it would be an over
simplification to say that the exhaust completely controls the dissipation

within the chamber.
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6.6 Empirical Correlations

Since an adequate knowledge of turbulence in a confined vortex is not
currently available to theoretically predict all the flow parameters it
appears useful to determine what correlations may be obtained by empirical
methods to predict turbulent results. Such a study has been carried out by
Newton (1968) and Rodoni (1969). Data from some 29 different reports in the
literature were used. A computer program was written to find optimum
groupings of independent flow parameters which would best fit certain depend-

ent parameters to a given curve.

Using this curve fitting method, empirical correlations were attempted

for the ratio of the tangential velocity at the peripheral wall to the jet
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injection velocity (vw/vjet), the ratio of the tangential to radial
velocities (v/u), the ratio of the circulation (I = vr) at the radius of
the exhaust hole to the circulation just outside of the peripheral wall
boundary layer (Fe/Po), the ratio of the circulation at the radius of the
exhaust hole to the maximum achievable circulation(re/rideal), the ratio of
the mass flow through the vortex to the "mo-swirl" mass flow (Wo), and the
maximum tangential Mach number in the vortex (Mt Y. Several of these

™
correlations have already been presented in Figs.g¥2, 6.8, 6.9, 6,10, 6.12
and 6.20

One of the best correlations achieved in this work was for the normal-
ized mass flow ratio (ﬁo). The empirical correlation shown in Fig. 6.21
allows the prediction of the mass flow ratio ﬁo for a vortex in terms of the
parameters re/ro, the ratio of the exhaust hole radius to the outer wall
radius; Ai/Ae’ the ratio of inlet area to the exhaust area; 2/D, the length-
to-diameter ratio of the chamber; and NH’ the number of exhausts. It was
found that ﬁo was primarily a function of re/r0 and 2/D for L/D > 2 and

primarily a function of re/ro, only when /D < 2.

The correlations shown in Figs. 6.22 and 6.23 show that the velocity
ratio (v/u)O is a function of the parameters re/r0 and L/D as well as the
area ratio Ai-/A.w predicted by the momentum balance theory. The presence of
these geometrical terms not predicted by the momentum balance theory tends
to indicate the coupling of the exhaust constraint to the wall shear as
discussed in the last section. Note that thru Eq. 6.4-3 these two corre-

lations for (v/u)0 may also be used to estimate recovery factor, FO/Fi.

No satisfactory correlation for the maximum tangential Mach number was
achieved. This failure was primarily due to the scarcity of data points
available, but may also be partially explained by the argument of the last
section that Mt can reach an absolute maximum which is a function of y only.
Most of the data points available operated well below this upper bound and
thus would be expected to show a geometry and pressure ratio dependence
incompatible with those few data points which were operating near the

maximum Mt.

These empirical correlations should prove helpful to anyone designing

a vortex tube for a particular purpose but they appear inadequate to provide
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Fig. 6.21 The ratio of the mass flow through the vortex chamber
to the "no-swirl" mass flow as a function of re/r s
the ratio of the exhaust hole radius to the outer
wall radius; A.,A , the ratio of the inlet area to
the exhaust aréa? L/D, the length-to-diameter ratio
of the chamber and NH, the number of exhausts.
(Rodoni, 1969)

the basis for a general theory of turbulence in a confined vortex flow. An
attempt to determine a natural Reynolds number for confined vortices has
lead R. N. Kumar to the correlation given in Fig. 6.24. The parameter most
closely related to dissipation in the chamber which is readily available is
the ratio of the circulation at the edge of the exhaust to that imparted to
the flow by the inlet tangential jets. Plots of l"e/F0 vs. a Reynolds number
based on r, (note that the unknown r, may be determined in terms of

m

geometricalmSErameters from Fig. 6.17) ®% demonstrated that the data fell

in a number of bands. It was then possible to collapse these into one band
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Fig. 6.22 The velocity ratio as a function of re/ro, Aw/Ai’ L/D,
and NH (Rodoni, 1969).

with the combination given in Fig. 6.24.

inlet tangential Reynolds number, Rei p

square root of Ae/Ai enters the ordinate.

i

The abscissa is the product of the

A rw/u, and r, /re. The

. . ma
This correlation should prove

more useful to anyone designing a vortex tube than that given in Fig. 6.20.

However a great deal of work remains before a general turbulent theory can

be achieved.
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VII. THE VORTEX AS A FLUIDIC DEVICE

7.1 Introduction
The technology of controlling fluid flow without using mechanically

moving parts has come to be known as fluidics. The use of a small control
flow to introduce swirl into the flow which one desires to control is one
popular way of achieving this. Vortex devices may be used in a number of
different ways (Mayer and Taplin, 1965) but the most basic of these is as a
flow modulator. The resistance for flow thru an orifice can be increased by
introducing swirl into the flow. The effect of a small swirl can be greatly
amplified by allowing the flow to converge radially before passing thru the

orifice.

In previous chapters, the influence of swirl on the relatiomship between
pressure drop across an orifice and the mass flow thru it has been analyzed .
in terms of a swirl parameter a. This parameter defined as the ratio of the
swirl velocity at the edge of the exhaust to the square root of twice the
energy available to the flow, must be related to valve characteristics and
geometry in order to predict valve performance. A typical valve geometry is
shown in Fig. 1.2. It is characterized by its small length-to-diameter ratio
(to minimize internal surface area for a given radius ratio) and the two types
of inlets; one which introduces the flow into the chamber with no angular
momentum, typically the supply port; and one which introduces angular momen-

tum into the chamber, typically the control port.

The outline of this chapter will be to first analyze valve performance
for the simplest possible mode of operation, incompressible flow with the
supply pressure and the outlet pressure held constant. Then other modes of

operation will be discussed.

7.2 Incompressible Valve with Supply and Outlet Pressures Held Constant
The results of Section 2.2 may be used to determine flow thru the valve
as a function of control flow or control pressure for the valve geometry
given in Fig. 1.2. From Eq. (2.2-8) the swirl parameter a was defined as
r

= e
O TG, - b /el ? .21
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and the dimensionless flow thru the chamber from Eq. (2.2-9) as

m
Q = p = 1/2 (7.2-2)
ﬂre[2p(pS pa)]
Vortex valve performance may be conveniently given in terms of the dimension-
less flow thru the valve W = ﬁ /ﬁ and the dimensionless control flow
. o o' o max
W =m /m . It can be readily seen that
c ¢’ o max _
Wo = Q (7.2-3)

The average tangential velocity, v, at the inlet of the valve, assuming

conservation of angular momentum in the mixing process, may be written as
-2

Ihch "
v._ = = (7.2-4)
W . .
m p_ A m
[ c'c o

where the subscript c denotes the value associated with the control flow and
AC is the control port area. This permits the swirl parameter o to be written
* Fé Tw wg Ao
o = T:;;i:ii:jgg (7.2-5)
with Ao the outlet port area. For the ideal case of no dissipation within
the valve Fe/Fw = 1 and Eq. §7.Zf5) may be rearranged to give
N RN (7.2-6)
The transformation given by Eqs. (7.2-3) and (7.2-6) may be used to
transform Fig. 2.3 into a plot of Wo vs. WC. Such a curve is given in Fig.
7.1 from Strickland (1968) labeled as K = «. A typical experimental curve
from Wormley (1967) also is included for comparison. The agreement between
theory and experiment is poor. The comparison for part of the curve can be
improved by including the effects of vorticity in the outlet flow as was done
in Section 3.6. The curve for circulation proportional to the stream function
with constant total pressure transformed from Fig. 3.20 is given here as

K= 0.

The two basic requirements for this simple theory to be valid are (a)
that the valve outlet is the major obstruction to the flow and (b) that
dissipation by shearing losses on the walls be negligible. The first of these
is satisfied if ﬂ,/re 2 2 and the ratio of the supply port to the outlet is

2z 4. As long as 2/D << 1,shear losses on the flat end walls may be expected
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to be more important than that on the cylindrical side wall. Losses on these
end walls may be conveniently measured in terms of the boundary-layer inter-
action parameter B, defined in Eq. 3.5-3 for laminar flow and Eq. 6.3-11 for
turbulent boundary layers. In terms of the vortex valve notation this
parameter may be written as

1/2
5.04/Ret — Laminar

x (7.2-7)
10 ce ~ Turbulent

s ol

NH (J

>'o>
=|,=
I_'N

o |2

with NH = 1 or 2 depending upon whether the valve has a single exhaust or
dual exhaust. For the boundary-layer effect to be negligible, B should be
less than approximately 1/2. It is clear that as WO + 0, B will exceed 1,

and the boundary-layer effect will become dominant.

Since flow in the wvalve is usually turbulent the point on the curve in
Fig. 7.1 at which the boundary-layer effects become important will be deter—
mined principally by the radius ratio. If the radius ratio is sufficiently
large the slope of the curve (BWO/BWC) remains negative and the operation of

"proportional'. On the other hand for more modest values

the valve is termed
of rw/re there is a portion of the curve where BWO/BWC > 0 as seen in Fig.
7.2. From Section 6.5 it may be deduced that the flow is statically unstable
at the points where 3WO/SWC » o, When the valve is being turned down the
flow jumps along the dotted line (1) and as it is turned up along the dotted
line (2). A valve with this type of performance curve is termed '"bistable"

due to the two potentially stable operating points for a single wvalue of Wc

over a portion of the curve.

The performance curve is terminated at the point where the supply flow
is shut off and W, = W, The reciprocal of W, at cutoff is termed the turn-
down ratio, TDR. Theoretical prediction of the turndown ratio calls for a
solution to the turbulent exhaust problem for conditions under which the flow
in the chamber is completely dominated by the end wall boundary layers.
Before considering this, it is desirable to look at some experimental results.
As long as the valve is properly designed and the Reynolds number is suffi-
ciently large, TDR should be a function of rw/re and AO/AC only. Note, in
particular, that neither the inviscid curve nor the boundary-layer interaction

parameter depends on the length of the chamber. Since only two principal
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parameters are involved, a fairly straightforward empirical correlation for
TDR as a function of rw/re and A.O/Ac should be possible. Such a correlation
is'given in Fig. 7.3 from Wormley and Richardson (1969). This figure also
includes two other important characteristics for the valve. One is the
control pressure required to cutoff the supply flow. This is given in terms
of the ratio of the control pressure at cutoff to the supply pressure, Pcc’
with both pressures measured relative to the exhaust pressure. The other
feature indicated is the line along which the valve's outlet flow may be
multiple valued. Although not indicated in the figure, the lines for constant
TDR = l/wcc should drop off at large re/rw so that for any given Ac/Ab there
is a re/rw which maximizes TDR as seen by Gebben (1967). They also should
become vertical at small re/rw so that TDR is essentially independent of

AO/Ac in this regime.
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Fig. 7.3 Vortex amplifier cutoff flow characteristics
(Single exhaust). (Wormley and Richardson, 1969)
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A different empirical approach was used by Mayer (1967, 1969). He
plotted Wo as a function of the angle between the flow velocity vector and

the wall at the wvalve entrance, i.e.

an ' (u/v),, = tan ' (—) (7.2-8)

2ﬁr 2]

From Eq. 7.2-8, it may be seen that the assumption that W_ = w'O[tan—l(u/v)w]

is equivalent to assuming that WB = F[W'c:(rwﬂ,/Ac)l/2

J. It is not too
surprising then that Mayer found the resulting curve to be independent of A
for numerous control port configurations as shown in Fig. 7.4. The inviscid
curve for K = 0 from Fig., 7.1 also is included for comparison. Mayer also
found his W: curve to be approximately independent of size, temperature, and

exhaust pressure, but it varied with rw/re, £ and the number of outlets.
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Fig. 7.4 Plot of W, vs. tan—1 uw/vw for a particular valve following
Mayer (1987)
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Theoretical analyses of the operation of a vortex valve, e.g. Taplin
(1965) , Wormley (1967) and Mayer (1967, 1969), have usually assumed that the
exhaust flow can be adequately described by the difference between the
internal static pressure at the exhaust radius and the external exhaust
pressure, This is equivalent to assuming that v goes to zero discontinuously
at the edge of the exhaust and that w is constant across the exhaust. A
comparison with the definitions of Q and o reveals that this corresponds to
setting

3= [1- a21*/? (7.2-9)
Comparison with Fig. 3.20 shows that this falls only a little to the right of
the curve for T proportional to ¥ with constant total pressure. Therefore,
Eq. 7.2~9 is more valid than the physical assumptions leading to it might
indicate. If Eq. (7.2-9) is used the equation for inviscid valve performance
corresponding to the curves in Fig. 7.2 is given by
1/2

p3

W z[fﬂ._i] =W [l-W 2] (7.2-10)
c re AC o} o

as given by Wormley (1967).

The wo vs. wC curve sometimes shows an increase in WO as the control flow
is turned on. (See Fig. 7.5 from Taplin,1965). This occurs when the initial
discharge coefficient of the outlet is significantly less than 1 due to
convergence of the streamlines to a cross sectional area less than the
physical orifice. In this case the addition of swirl to the flow can encour-
age the flow to remain attached to the walls and increase the discharge
coefficient to initially over compensate for the loss in effective pressure.

(Effect also observed in Fig. 6.16).

7.3 Theoretical Predictions of Turndown Ratio

As seen in the last section, chamber flow will be dominated by end-wall
boundary-layer effects when the supply flow is shut off. Thus it should be
possible to use the analysis of Section 6.3 to predict the pressure drop

across the chamber near turndown and obtain an estimate of minimum flow.

Near turndown the tangential velocity component is much larger than
either the radial or axial components within the main part of the chamber

flow. Therefore the radial momentum equation may be written approximately as
2
3p _ pevt -
- T (7.3-1)
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Fig. 7.5 Vortex valve performance curve showing an increase
in discharge coefficient with increasing swirl.

With the circulation assumed constant for r > t and given by Eq. 6.3-16 for
r < f, Eq. 7.3-1 may be integrated between the exhaust and the cylindrical

wall to give

A

p. - p_ = fu prg i 2 r, -2 dr(7.3—2)
W e ) =3 dr + J pFO[l + Al(l - EO] 33
r r
e
with Al = (B - l)/()xl - 1), and r = 1 - 1/B. After integration Eq. 7.3-2
yields )
(pw ~ pe)rw _ Te (7.3-3)
——2—— =F (B, /)
pl T
0 w
with r r 2 ~
1 2 1 2 2
F(B, =) = 5L 1] + ——, | @+ [ ()1
W r r2(l+Al) e

~ ~

r 2 S S _
+ 2Al(1 + Al)[;; - 11 + 3Al n [Al(re 1) (7.3-4)

+ =1+ Ai(l - A G- 1)+ :—]"l)]
e e e
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Consistent with the approximation which lead to Eq. 7.2-9, the normalized

outpuf flow may be approximated as
p.-p 1l/2
WO = (%) (7.3-5)
Py Py

With the aid of Eq. 7.2-4 the ideal circulation introduced into the valve may
be written as w2

1/2
Lot r A [20(p -p )] 7. 3-6)
i p A W '
C c o

Since the 2/D of the valve chamber is small it should be possible to neglect
shear losses on the cylindrical wall in comparison to those on the flat end

walls, so that it is consistent to assume that

TO = Fi (7.3-7)
At turndown W = W and Egs. 7.3-3 thru 7.3-7 may be combined for p_ = p
. 0 in CC s c
to give
_ 1 2 2.-1/2
WCC = TDR [1+ 2 AoF/Ac] (7.3-8)

This theoretical prediction of turndown ratio is plotted in Fig. 7.6.
It gives a turndown ratio which increases as radius ratio decreases. However,
if the control flow required at cutoff is less than the maximum WL in the
inviscid curve the turndown point will be an unstable point (Fig. 7.2). With

the aid of Eq. 7.2-10, this value is given by

r A
W, = 0.595 [;E-Kﬁ]l/z (7.3-9)
max w o
which gives a bound for stable TDR
Ty 80172
TDR . = 1.68 [;f-zgq (7.3-10)
e C

This line is included on Fig. 7.6. The achievable TDR is governed by Eq.
7.3-10 for low rw/re and by Eq. 7.3-8 for large rw/re with the maximum value

of TDR occurring at the intersection of the two curves.

Within the uncertainty surrounding the proper value of Ce discussed in
Section 6.3, these theoretical predictions agree with experiments. The
optimum radius ratios for maximum turndown are indicated as is the significant
gain in turndown ratio achieved by using a dual exhaust rather than a single
exhaust. From Eq. 7.2-7, it may be seen that going to a dual exhaust is 1like
cutting c_ in half. This is easily understood by recognizing that the

f
minimum flow condition is set by the mass flow supported by the end wall
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Fig. 7.6 Theoretical prediction of TDR as a function of radius
ratio. Achievable TDR governed by the lower of the
two curves.

boundary layer. For a given exhaust radius it is independent of whether the
chamber has a dual or a single exhaust. However the maximum flow for a given
exhaust radius is double for dual exhaust of that for a single exhaust.

Thus the ratio of maximum flow to minimum flow which is the turndown ratio

should be approximately twice as much for a dual exhaust valve.

Computer programs have been written to predict incompressible valve per-
formance by Bichara and Orner (1969) and for either compressible or incom-—
pressible by Felsing, Mockenhaupt and Lewellen (1970). Bauer (1968) has
programmed the case of a choked outlet. The boundary-layer treatment for all
of these analyses is essentially similar to that given herein and thus also
suffers from incomplete knowledge of the dependence of ce on Ret and

geometry.

7.4 Other Modes of Operation for a Fluidic Vortex
The basic features of the vortex valve can be used in several ways to
suit different purposes other than the primary purpose of flow modulation.

An indication of the possible variation is given by the following list.
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a) Signal Amplifier
Figure 7.7 is a schematic of a five port vortex amplifier developed
by Bendix Research Laboratories, Taplin (1969). One mode of operation is to
amplify a control pressure change by connecting the external port as the
signal receiver with the exhaust port acting as a vent and the internal port
blocked. Large changes in Po can be obtained with small changes in P.- With

this arrangement it is even possible to reverse the flow in the external port.

\ Control Port

nternar |
Port

Port

~TTTg
l e ~4—— Exhaust Port
' 3

)
s

Supply Pory

e e o]

Fig. 7.7 Five port vortex amplifier (Taplin, 1969).

If it is desired to amplify the absolute pressure rather than the
pressure change, the internal port may be used as the signal input with the

supply port as the signal output.

b) Pressure Regulator with Variable Flow Rate
If the control pressure is held constant, the supply pressure is

essentially constant over a range of output flow as shown in Fig. 7.8.

c) Diode
A two port valve, as sketched in Fig. 7.9 may be used to provide a
much higher resistance to flow in one direction than the other. For an incom-—
pressible diode the ratio of pressure drop required for flow in the reverse
direction to that required for the same flow in the forward direction is equal
to the square of the turndown ratio of the equivalent vortex valve. Thus with
proper design this can be of the order of 100 to 1, which is a much higher

ratio than can be obtained with any other type fluid diode (Paul, 1968).
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d) Signal Summation
By using a number of control ports around the periphery signals may
be added or, using opposing control ports, subtracted. Bendix (Taplin and
Mc fall, 1969) has demonstrated the processing of as many as 16 separate

control ports on a single 1 inch diameter amplifier.

e) Oscillator

As demonstrated in Section 7.2 a vortex valve can be made to operate
in regions where it behaves as if to provide negative resistance to the flow
thru it. This provides the possibility of operating the vortex as an oscil-
lator. An arrangement which is particularly conducive to a smooth oscillator
is sketched in Fig. 7.10(a). A reservoir is added to the supply inlet to act
as a capacitor. The quasi-steady operating curve for such a valve is sketched
in Fig. 7.10(b) for the control pressure held constant. The frequency of
oscillation may be set by varying the volume of the capacitors. The range of
oscillation may be improved by biasing the supply flow to introduce swirl into
the vortex in a direction opposite to the control. Such an oscillator pro-
vides the promise of becoming an accurate temperature sensor. (Bell, 1966;

Hart, 1969).

@

W
SISTIVE o
igNE WITH Y OSCILLATION OF
VOLUME ‘WALL PRESSURE
P
o
(a) SCHEMATIC (b) OPERATING RANGE

Fig. 7.10 Negative resistance oscillator
(Taplin, 1965).
£) Flow Meter
If the radius ratio between the annular inlet and the center outlet
in Fig. 7.9 is reduced to approach 1 so there is little dissipation within
the valve, there will be an oscillation associated with the outlet. When the
normalized angular momentum flux is greater than that which can pass thru the

exhaust in steady flow (see Sectiom 6.5) the flow thru the exhaust is
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unsteady. For a fixed geometry the frequency of this oscillation varies
linearly with flow rate (Ryan, 1969) to provide the basis for a flowmeter

with a digital readout.

g) Fluid Gyroscope
For large radius ratios, and low values of swirl, small angular
velocities may be greatly amplified as the flow converges to the exhaust.
Thus a pressure measurement near the axis of the chamber in Fig. 1.2 would be
sensitive to small rotations of the porous ring. Fiebig (1966) and Sarpkaya
(1968) show that such a device can be a sensitive angular-rate sensor over a

wide frequency band.

h) Vorticity Meter

If an independent measurement of thru flow is available the pressure
drop required to drive a swirling flow thru an orifice may be used to deter-
mine the vorticity flowing into the orifice. Possible arrangements for such

a fluidic vorticity meter have been analyzed by Guenette (1970).
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VIII. ADVANCED NUCLEAR ROCKET CONCEPTS EMPLOYING VORTEX CONTAINMENT

8.1 Introduction

Since the advent of the space program many concepts have been proposed
for utilizing nuclear energy for space propulsion. The high energy density
of nuclear fuel (2 x lO7 kcal/gm for the fission reaction compared with 3
kcal/gm for a typical chemical reaction) makes nuclear energy very attractive
as an energy source for space systems. However, nuclear fuel is both expen-
sive and has a high molecular weight, hence it is necessary to transfer a
large portion of the energy generated in the nuclear fuel to a gas which is
more suitable for use as a propellant. The easiest way of achieving this ap-
pears to be by containing the nuclear fuel in a solid core heat exchanger and
allowing the propellant gas to flow thru the heat exchanger to receive energy
from the hot nuclear fuel rods before the propellant is expanded thru the rocket
nozzle. This is the basis for the NERVA nuclear rocket. Such a rocket has been
successfully designed, built,and ground tested and has proven that it is poss-
ible for a nuclear rocket to achieve a propellant exhaust velocity which is about
twice that which can be achieved by any chemical rocket. This means twice as
much total impulse can be delivered to a space vehicle from the same amount of

propellant.

The performance of the NERVA nuclear rocket is limited by material con-
straints on the temperature. The performance can be increased in 3 general
ways. (1) It may be possible to obtain better materials which are capable of
operating at higher temperatures. (2) It may be possible to accelerate the
propellant to higher exhaust velocities without increasing its static temper-
ature. (3) It may be possible to contain the nuclear fuel in the gaseous phase
to circumvent the temperature limit on the nuclear fuel. All three approaches
are being pursued. The most promising approach to the second method is to
first convert the thermal energy from the nuclear reaction into electrical
energy and then to use some type of electric thruster to accelerate the pro-
pellant. The major disadvantage of such nuclear-electric propulsion systems
is the large mass of the electric power generator which forces the system to
have a relatively low thrust-to-weight ratio. McLafferty (1967) and Ragsdale

(1968) have reviewed some of the concepts proposed following the third approach.

In this review we are primarily interested in considering to what extent
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vortex flows may be useful in realizing more of the potential of nuclear pro-
pulsion systems. Kerrebrock and Meghreblian (1961) proposed vortex contain—
ment for a gaseous fission rocket in a classified report in 1958. Grey (1959)
published the same idea in the unclassified literature. The idea is to sus-
pend an annulus of fissioning fuel by maintaining an equilibrium between the
centrifugal force on the rotating fuel and the hydrodynamic force of hydrogen
flowing radially inward thru the fissioning fuel. Analysis indicated promising
possibilities. This led to a number of experimental and theoretical investi-
gations of vortex containment and to a general evolution of other ways of utili-
zing vortex flows for containment. Rather than follow a historical approach to
these investigations, let us first look at the general requirements of a gas-
eous core nuclear rocket and then determine to what extent these requirements

can be met with vortex containment.

8.2 Design Requirements for a Gaseous Nuclear Rocket

To maintain the stable, continuous fission reaction needed for a nuclear
rezctor it is necessary to have a critical mass of fuel. This critical mass
depends strongly on geometry and on the cther materials present in the reactor.
The smallest values are achieved when materials are present to moderate the high
speed neutrons generated by the fission reaction without absorbing them. In the
case of a gaseous nuclear rocket almost all of the moderating material will be
located around the cavity containing the fuel as seen in Fig. (8.1) Critical
experiments on such a cavity reactor have been run by Pincock and Kunze (1967 -
1969). Most of their experiments have used strips of metal foil to simulate a

gaseous fuel but a check has been made using UF, gas to ascertain that the foil

6
strips do adequately simulate the gas conditions to a 10% accuracy. Figure (8.2)
shows some of their results both in terms of the critical mass and the concentra-
tion of Uranium - 235 required as a function of the fraction of the radius to
which the fuel is restricted. The value of 9 kg for the U235 distributed over
the whole cavity is about the minimum that can be achieved for any geometry.

The actual critical mass required in a gaseous core rocket may be from 2 to 5
times greater than this due to such effects as the restriction of the fuel away
from the walls, leakage of neutrons out the rocket nozzle, and neutron absorp-

tion in the structural members of the rocket.

It is possible to reduce the amount of fuel required in the gaseous state

if some solid fuel is included in the moderator but this degrades the performance
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potential of the system. This can be demonstrated by an energy balance of
the system which also gives an idea of design temperatures. Even in a gas-
eous core system there is still a temperature limit imposed on the solid com~
ponents of the rocket. If these solid components are to be cooled by the pro-

pellant flow before it enters the cavity, an energy balance for the propellant
shows that

hg/hs =1+ (1-x) (1-x)Ic+x@1-x] (8.2-1)

where hg is the final enthalpy of the propellant after passing thru the
cavity, hs is the enthalpy of the propellant leaving the solid components,

k is the fraction of the total energy which is generated by fuel in the solid
components and y is the fraction of the energy genmerated in the gas which is
deposited in the walls. The ratio of propellant exhaust velocity obtainable
in a gaseous core nuclear rocket to that in a solid core limited to the same

maximum temperature in the solid components is given by

v 1/2
.:i& = {-;5 } 1/2 = [1 + (1-x) (1-x) ]
l..
s < *x( <) (8.2-2)

About 127 of the energy available from the fission of U235 is invested in
vy and B rays and in high energy neutrons. Energy of this form cannot be
efficiently transferred directly to the gas, instead it will be deposited in
the solid components of the reactor. Thus a lower bound on x is approxi-
mately 0.1. This would be increased by any convective or radiative heat
transfer from the gas to the solid components and by any secondary nuclear
reactions. The upper bound on the exhaust velocity corresponding to y = 0.1
and K = 0 in Eq. (8.2-2) is

Ve /Ve s [lO]l/2
g s
(8.2-3)
This bound on performance is rapidly decreased as Kk increases. If 1/2 the
fuel is placed in the solid components than this potential boost in exhaust

velocity is cut to s 1.35.

The limits on the performance of a gaseous core nuclear rocket imposed by
the above energy considerations can, of course, be circumvented by using a
radiator to provide additional cooling. This in turn forces a trade off be-

tween increasing exhaust velocity and decreasing thrust-to-weight ratio which
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makes it difficult to improve overall performance in this manner.

A plot of ideal exhaust velocity versus chamber temperature is plotted in
Figure (8.3) for hydrogen at various pressures. These curves assume that es-
sentially all the thermal energy of the propellant is converted into directed
kinetic energy by the rocket nozzle. The NERVA engine is designed for =
2500°K. Figure (8.3) and Equation (8.2-3) show that the average stagnation
temperature of the hydrogen propellant in a gaseous core system will be ¢

10,000°K.

The fuel pressure required for criticality cam be determined from the den-

sity in Fig. (8.2) when the temperature is specified. A concentration of lO19

atoms/cm3 at a temperature of 10,000°K would yield a uranium pressure of

23

19 3 -
p = nkT = (10 atoms/cm”) (1.38x10 Kg—mz/sec2—°K)(lO,000°K)

-6
i.e., b (10 m3/cm3)(l.013 x 10° Kg m/sec2 atm.)

~ 14 atm.
u (8.2-4)

o
4

The pressure of the uranium gas just computed should not be confused with
the chamber pressure. Most of the fission energy must be transferred to a
iight propellant gas such as hydrogen if a high exhaust velocity is to be a-
chieved. The degradation in performance due to the increase in molecular

weight, ﬂ, of an exhaust mixture at a fixed stagnation temperature is given

by

v

e . . 1/2
mixture . ~
1 ~ 8.2~
ve [MHZ/Mmixture ] ( >)
Hp
This may be written as
v ~ a=1/2
_Emixture . sz . Eu M" (8.2-6)
v
P P M
eH2 _“total total MH2
and wh <
when p < sz
v . ~-1/2
e . m
__hmixture ~ 1+ _u
v, R (8.2-7)
Hz "H,
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From Equation 8.2-7, it may be seen that 90% of the ideal hydrogen exhaust

velocity may be achievable if n /ﬁH < 0.2.
u 2

The mass flow ratio of fuel to propellant arrived at in the last para-
graph can be used to determine a pressure for the hydrogen if a gaseous core
system is to operate with a uniform mixture, i.e. with no separation between

fuel and propellant.

m M
p, = A2 ) p
H2 &1 ~ u (8.2—8)
u M,
so that
235 ~ 3
sz 2 (5)(—E~J 14 atm 8 x 107 atm (8.2-9)

The propellant would have to be injected into the chamber at some still
higher pressure. This appears to be beyond the current state of the art of

pump design.

Even if it were possible to operate at the high pressures just arrived
at, the rocket would prove uneconomical for all but a few very ambitious
missions, since nuclear fuel costs in the neighborhood of $14,000 per kilo-
gram. Some mission analysis must be performed to arrive at a mass flow ratio
of ﬁﬂz/iuzas that will give the gaseous core system a significant im-
provement over a solid core nuclear rocket. Ragsdale (1963) proposed that
this may be as low as ﬁHZ/ﬁU235 2z 35 based on the assumption that the higher
exhaust velocity of the gaseous nuclear rocket will give it an advantage
as long as the total fuel cost is less than the cost of the propellant. The
figure of 35 is based on a propellant cost of $400/kg, the approximate cost
of placing anything in earth orbit with Saturn V rocket. If the current plan
for an earth-orbit shuttle system proves successful in its goal of reducing
orbit cost an order of magnitude (Chako, 1969) this will also increase the
required 6H2/6U235 for ag economical rocket an order of magnitude to
something between 10~ amd 10~. Although the exact mass flow ratio limit is
unclear it is evident that some degree of separation between the fuel and

propellant must be achieved rather than depending upon increasing pressure to
increase m : .
inc a H2/H1U235

One way of expressing the separation between fuel and propellant is in
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terms of a "containment time'", L defined as a ratio of the dwell time

of fuel in the cavity to the dwell time of the propellant, i.e.,

i o
average *
Hp B m,235
(8.2-10)

This containment time may be expressed in terms of cavity pressure as

- EEZ Perit R

T - [
m;235

T
2

With P oerit specified by the criticality condition as approximately 0.005

gm/cm ,ﬁHz/mU235 set at approximately 102 as demanded by economics, THZ set
at 10,000°K to achieve an Isp of = 2500 seconds, and p set at 1,000 atmos-
pheres (a pressure that appears within the state of the art of pump design

Duke and Houghton, 1966), and ﬁHz = 1 since hydrogen is dissociated at this

temperature and pressure, then

T, ® 400
(8.2-12)

In summary, a successful flow containment scheme for a gaseous nuclear
rocket calls for hydrogen to flow thru the cavity at least 400 times the rate
at which U235 flows thru the cavity.

8.3 Contaimment by Pressure Diffusion

Pressure diffusion in a binary gas mixture within a vortex flow has been
considered by many authors. No attempt is made here to give a historical re-
view of this work. Rather, the intention is to review the pertinent facts

and to see what conclusions can be drawn.

Based on a one-dimensional, inviscid model, Kerrebrock and Meghreblian
(1961) have shown that in order to have significant containment it is neces-

sary to have

M2

G~ - Dv, M2
Ml 1 t1 max

e = > 1

m/ZﬂplDlZL (8.3-1)
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within the vortex. In Equation (8.3~1) the subscripts 1 and 2 refer to the
light and heavy gas respectively, M is the molecular weight, v the ratio
of specific heats, Mt the tangential Mach number, and D12 the binary diffusion

coefficient.

Essentially the same conclusion was also reached by Lewellen, Ross, and
Rosenzweig (1966) using a quite different three~dimensional, viscous model
for the vortex flow. The 3-dimensional model they assumed is given in Fig.

(8.4). It calls for nullifying the secondary flow on the end wall through
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Fig. 8.4 Secondary flow pattern modified to
control boundary-layer flow and thus
enhance separation.
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which the flow will finally exhaust. Pinchak and Poplawski (1965) and Ross
(1964) have shown that this is possible by tangential blowing in the end
wall. The model also calls for the radial stagnation surface, T , discussed
in earlier chapters to occur slightly outside the radius of the exhaust. If
the flow across the chamber from the end wall boundary layer out the exhaust
is modelled as a flow with uniform axial velocity, with the Mt proportional
to r and the concentration ratio of light to heavy species assumed a function

of z only, then it is possible to show that

Py )
= + ) 0 exp (-0z/L)
p1tPy pytey 2 = (8.3-2)

As discussed in the last section, the ratio of uranium density to hydro-
gen density in the exhaust should be less than 10_2 to have an economical
rocket. But, the density ratio must be of the order of 1 in the main part
of the chamber to achieve criticality while holding the chamber pressure to

less than 1000 atmospheres. These two conditions can be satisfied if

(8.3-3)

Equation (8.3-3 or Equation (8.3-1) as observed by Kerrebrock and Meghre-
blian (1961), imposes a severe restriction on the mass flow per unit length
of the vortex and leads to the concept of a large number of small diameter
vortices to form a matrix reactor. For example, with ﬁz/ﬁl = 235, corres-
ponding to U235 and dissociated HZ; with M

¢1 max ~1, with ACT 1.3; and with

P01 ¥ 10"~ gm/cm - sec as estimated by Schneiderman (1964); the mass flow per

unit length is limited to

m/L s 0.5 gm/cm - sec
(8.3-4)

For a rocket thrust of 50,000 kg at an Isp = 2500 sec, it would be necessary
to have m = 20 kg/sec which implies a total vortex length of = 400 m.

An estimate of the required vortex tube radius can be obtained fromr
criticality conditions. Total reactor volume for a minimum critical mass

reactor should be of the order of 1 m3. This can be achieved over a total
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length of 400 m, if T, 1 cm. A possible reactor geometry would appear to
be a matrix of 400 tubes with L ® 1 m and r, * 1 cem paﬁked to form a

cylindrical reactor.

The critical question is whether such high tangential Mach numbers can
be achieved at the low mass flow rates available to drive the vortices.

Assuming a Schmidt number of order 1 (Sc = u/plD12 ), Equation 8.3-3 implies

M2 /N 2 0.02

1 max
(8.3-5)
Table (8.1) summarizes the results of various attempts that have been made
to maximize Mi/N in vortex chambers. The maximum value that has been obtained
was a value of 0.0l by Lewellen, Ross, Rosenzweig (1966). Although this later
value appears close to that required, it should be noted that it was obtained
at Ret ® 5,000 which is at least two orders of magnitude smaller Reynolds

number than what would be expected for design conditions.

Table 8.1

Values of Mi max/N obtained in various experiments

¢ max N Mi max /N

Ragsdale (1960) .6 4000 107
Keyes (1961) .7 75 .007
Poplawski and Pinchak (1965) 1.2 4700 3x 1074
Roschke and Pivirrotto (1965) 1.0 330 .003
Pivirrotto (1966) .7 240 .002
Lewellen, Ross and Rosenzweig (1966) .45 20 .01
Nakamura (1966) .75 200 .003

L - 2 . . .
The principal obstacle to obtaining large values of Mt/N in a jet-driven
vortex is the angular momentum losses due to shear on the inner surfaces of
the chamber wall. An upper bound on the Mach number at the edge of the ex-

haust may be given as

T a, r,
M < _9 M - _1 (8.3-6)
t T, t, a r
e i i e e
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where the subscript i denotes the value at injection, e the value at the edge
of the exhaust, Fo is the core value of circulation, and a is the local

speed of sound. The speed of sound ratio ae/ai corresponds to the desired in-
crease in Isp for the rocket, i.e. ae/ai 3., The injection Mach number cannot
be much greater than 1 without imposing large pressure drops and shock losses.
The circulation ratio ro/ri can be estimated from an angular momentum bal-

ance as given in Equation (6.4-8)

Pi ce vy -1
To- Aty )
o W (8.3-7)
which leads to
r p v.TY__ -1
FE = [l + ce _E%l;_li.J
i m/2 (8.3-8)

With ﬁ/L given from Equation (8.3-4), a sonic injection velocity of approxi-
mately 4 x 103 m/sec (corresponding to hydrogen at 2500°K), s of approximately
0.005 gm/cm3 to meet the criticality condition, and T, of approximately 1 cm

this leads to

o . 1
r 1+ 4m x 1o3cf

(8.3-9)

As seen from Chapter VI, C. is rather uncertain, but for Ret between 105 and

f
107 it is not likely to be less than 0.002. Thus

r
?S- < 0.04
i (8.3-10)

Under these circumstances a radius ratio, rW/re, of the order of 75 would be
required according to Equation (8.3-6) before there is any possibility of

reaching Mte = 1.

The radius ratio is limited by the requirement that all of the flow must
flow thru the exhaust. The larger the radius ratio, the smaller the exhaust
and the smaller the total flow thru the chamber. This in turn fixes the length
of the chamber according to Equation 8.3-4. But shortening the length of the

chamber can force the losses in the end-wall boundary layers to also become more
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important. The length-to-diameter ratio can be estimated by another con-
sideration. If T is to occur in the position indicated in Fig. (8.4), it

is necessary to have B * 1. From Equation 6.3-11, this leads to

2ﬂcprFO r

2 (m/%)

(8.3-11)
Which for small values of Fo/Tileads in combination with Equation (8.3-8) to
£ = 2xr * 10 cm

w

which is the same order of magnitude as the 1 m length assumed earlier for

the reactor matrix geometry. This means that the mass flow per tube must be
of the order of 5 gm/sec. If the effective total pressure driving the flow
out the exhaust is of the order of 200 atmospheres after considering the swirl,

then Roback (1967) shows that

cmc—sec

(8.3-12)
which calls for
2 . 2
ﬂre .07 cm (8.3-13)
or
r * 0.15 cm
e
(8.3-14)

This corresponds to rw/re ®7, over an order of magnitude lower than the re-
quired value of 75 obtained earlier. Or viewed from another prospective, an
rw/re % 75 would lead to large values of B and consequently intolerable end

wall shear losses.

The conclusion is that in order to make this type of reactor work it is
necessary to either find some method of adding angular momentum to the vortex
or some way of cutting wall shear losses. Both methods have been tried in
the literature. Methods of driving the vortex using electromagnetic body
forces have been analyzed by Lewellen (1960), Gross and Kessey (1964), Romero
(1964) and Johnson (1964). There still remains the possibility that enough
angular momentum can be added to the flow to make such a system work. How-

ever, such a magnetohydrodynamically driven vortex would still be subject to
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the limit on mass flow given in Equation (8.3-4). Thus it would still call
for a large number of vortices packed in some type of matrix arrangement. No
analysis of a reactor based on a matrix of magnetohydrodynamically driven vor-

tices is available in the literature.

Rosenzweig (1961) presented an idea of forming a vortex matrix without
the intervening walls to reduce wall shear losses. An end view schematic of
such an arrangement is given in Fig. (8.5). Subsequent experimental tests
have shown that approximately 1/2 of the internal wall structure is needed to
stabilize the vortex arrangement given here (Rosenzweig and Lewellen, in Cooper
1965). Thus the maximum possible increase in Mi max /N using this approach
as opposed to the individual vortex tubes would be approximately 2 which would
still not be adequate. To make this matrix approach workable for a reactor,
it appears necessary to find some vortex arrangement that is inherently stable
so that the internal surfaces between the vortices could be nearly completely
removed. (A recent numerical study by Murty and Rao (1970) indicates that a
large array of parallel line vortices may be stabilized by allowing them to

rotate uniformly about the centroid of the array.)
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Fig. 8.5 Cross-section of v-rtex matrix designed to support a large
number of vortices without intervening walls (Rosenzweig, 1961)
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8.4 Containment by Secondary Flows

The closed cells evident in Figs. (3.13 and 3.14) provide another means
of containment. One fluid may be contained in the closed cells while the other
fluid remains separate from it and passes thru thé boundary layers. The only
losses of the contained fluid would be due to diffusion at the boundaries be-
tween the two fluids. This type of containment has been intensively studied
at United Aircraft Research Laboratories and to a lesser extent at Aerospace
Corporation and at Catholic University of America. A nuclear rocket based on
this type containment is sketched in Fig. (8.6). In this concept, axial flow
has been added to enhance the mass flow ratio of propellant to fuel. Since
successful containment of this type requires that the fuel and propellant
never mix it is necessary to rely on thermal radiation to transfer energy
from the fissioning fuel to the hydrogen propellant. A small amount of seed
material such as submicron-size tungsten particles would be added to the
hydrogen to increase its absorptivity at low temperatures and complete the

effective transfer of energy.

CAVITY PROPELLANT INJECTION
ALONG waLL
THERMAL RADIATION

BYPASS PROPELLANT

\ \\\\ INJECTION IN THIS REGION
AN
\\\\\\\\\\\ NN

FUEL A
INJECTION ky

NUCLEAR FUEL

SEEDED HYDROGEN
PROPELLANT

Fig. 8.6 Open cycle vortex stabilized gaseous nuclear rocket engine concept
(McLafferty, 1961)
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A demonstration of significant containment is shown in Fig. (8.7) which
is a plot of the radial distribution of the density ratio of two different
gases. The configuration used to obtain this result is shown in Fig. (8.8).
Annular exhausts were provided to permit axial bypass flow. The radial dist-
ribution of the contained spécies was determined optically through windows
in the end walls. The "simulated buffer gas" was injected thru the wall jets
distributed around the periphery of the chamber. The contained "fuel" was
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Fig. 8.8 Directed-wall-jet vortex tube with axial bypass in which the
distributions of Fig. 8.7 were obtained.

injected axially thru one of the end walls. In spite of the rather distinct
interface between the two species evident in Fig. (8.7), the containment as
measured by the containment time ¢ , defined in Equation 8.2-10 is disap-
pointingly low, approximately 2 fgr this particular set of experiments. Two
different mechanisms appear responsible for this relatively poor containment.
There is the problem of turbulence at the interface of the two gases, parti-
cularly in the end wall boundary layer, and second the problem of disruption

of the closed cell by the continuous injection of the 'tontained" gas.

In a low Reynolds number, transient experiment, which eliminates both of
the above fundamental problems, Chang, Chi, and Chen (1968) achieved contain-
ment times approaching those required by Equation 8.2-12. A summary of their
results is given in Fig. (8.9) as a function of the average density ratio of

contained "heavy" gas to the light gas passing thru the chamber. It may be
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possible to overcome the problem of replenishing the slow losses of contained
gas without unduly disturbing the closed cells with clever injection schemes,
but there is no apparent way of circumventing the turbulent diffusion at the
interface of the two gases at the large Reynolds numbers which would be
required in a full scale reactor. Compounding the difficulty of stabilizing
the interface is the fact that the average density of the fuel, Ef divided'by
the propellant density at the periphery of the chamber, pPl’ would have to be
greater than 1 to achieve criticality. The negative dp/dr required for this
will have a destabilizing influence according to Section 5.3. Some results
of United Aircraft Corporation [Clark, et al (1968)] show that containment is
sharply reduced when Ef/ppl is increased above = 0.2. Typical results are
shown in Fig. 8.10. Over two thousand different flow conditions have been
Re; w = 27,000 Re, ; = 180,000 Rey = 100
LIGHT - GAS INJECTION THROUGH SINGLE SLOT ALONG LENGTH OF VORTEX TUBE
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Fig. 8.10 Typical results of containment tests for basic vortex tube with
radial inflow [Clark, Johnson, Kendall, and Mensing, 1967]
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tried (See the work of Clark, Johnson, Kendall, Mensing and Travers) in

attempts to increase both T. and Sf/ppl. Since their work on stability (see
Chapter V) indicated that larger negative density gradients should be stable
with the large circulation gradients predicted for vortices with radial out-
flow then for radial inflow, much of their work has concentrated on this con-
figuration [Johnson (1967) and Kendall, Mensing and Johnson (1967)]. A

summary of their results for radial outflow is given in Fig. 8.11. Although

there is a slight gain in T, at the larger values of density ratio, the best

AXIAL-FLOW REYNOLDS NUMBER , Re; w = 46,000 7O 481,000
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Kendall, Mensing and Johnson, 1967
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combination of T. and Ef/ppl falls far short of the conditions necessary for
open cycle containment. As previously noted in Section 5.7 radial outflow
does not stabilize the flow. This type of containment for the gaseous nuclear
rocket must apparently be abandoned unless some way of stabilizing the nega-

tive radial density gradient can be discovered.

The relatively poor containment achieved has lead UAC to direct its
attention toward the closed cycle "Nuclear Light Bulb" concept shown in Fig.

8.12. 1In the nuclear light bulb engine an internally cooled transparent wall

INTERNALLY COOLED
TRANSPARENT WALL

COOLANT INJECTION
ALONG WALL

THERMAL

FUEL
INJECTION

NUCLEAR FUEL

NEON COOLANT

SEEDED HYDROGEN
PROPELLANT

Fig. 8.12 Nuclear light bulb concept (McLafferty, 1967).

(made of fused silica or beryllium oxide) is used to separate the fuel and the
propellant while allowing thermal radiation to pass thru it. Neon coolant

gas is injected tangent to the inner surface of the transparent wall to drive
the vortex which is used to isolate the gaseous nuclear fuel from the trans-
parent wall. The major fluid dynamic advantage of this concept is that the

cool neon has a much higher density than the propellant hydrogen and positive

171



radial density gradients can be maintained throughout the vortex to provide

a strong stabilizing influence. A density discontinuity (but no pressure
discontinuity) is maintained across the transparent wall between the outer,
low density hydrogen and the inner, high density neon. McLafferty (1967)
estimates that the energy deposited in the transparent wall by small, but
finite thermal radiation-and by convection, can be removed by the coolant

flow provided the walls are sufficiently thin (on the order of 0.005 in.).

The only strength requirement on the wall is that it be capable of stabilizing
the boundary. A preliminary analysis by Tam, Goracke, and Lewellen (1970)
indicates that such thin walls are, at least, capable of stabilizing the

elementary Kelvin-Helmbotz instability at the interface.

The requirements on the vortex are quite different for this closed
cycle system than for the previous open cycle system. A large value of Te
is no longer required since what uranium flows thru the vortex can be cooled,
separated from the neon, and recycled to the reactor. The containment
requirement is replaced by the condition that the partial pressure of uranium
at the inner surface of the transparent wall must be low to prevent conden-—
sation on the wall. Condensation of uranium on the transparent wall would
block the transmission of thermal radiation and greatly increase the energy
deposited in the wall. The conceptual design given by McLafferty (1969)
calls for a transparent wall temperature of the order of 1000°K. The vapor
pressure of U235 at this temperature according to the extrapolation of the
curves given by Ragsdale, Kascak and Donovan (1967) is of the order of 10“lS
atmospheres. When it is noted that the center line U233 pressure must be of
the order of 100 atm., this implies that an extremely low value of the ratio
of the partial pressure at the wall to the average partial pressure (pf /Ef)
must be maintained. However, it appears probable that a uranium vapor
pressure far above equilibrium pressure can be maintained in the presence of
the very large thermal radiation flux associated with the concept. It then
becomes a question of determining how large the partial pressure of uranium
at the wall can become without unduly increasing the energy transfer to the
wall. This does not appear to have been firmly established. Values of
Pe wall/Ef as low as 0.04 have been achieved in an unheated vortex
(McLafferty, 1970). Tests (Mensing and Jaminet, 1969) have also been con-

ducted with r ~ f heated vortices to simulate the radial temperature
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gradients expected near the outer periphery. This has a strong stabilizing
effect and results in a strong decrease in simulated fuel partial pressure
near the wall. Whether this degree of containment is adequate for the nuclear
light bulb or not cannot be answered until a better estimate of the allowable
partial pressure of uranium at the inner surface of the transparent wall is

obtained.

8.5 Other Types of Containment

Other arrangements of closed streamline patterns may be imagined such
as a two-dimensional forced vortex of the type which may be found in the
separated wake of a bluff body (Evvard, 1965). However all of these config-
urations which consist of a heavy rotating fluid contained inside a lighter
one are plagued with stability problems. The nature of the stability problem

associated with Evvards proposal is discussed by Reshotko and Monnin (1965).

A somewhat different approach is taken by Moore and Leibovich (1970).
They considered flows with closed bubbles which could have zero velocity
inside the contained bubble with the expectation that such a constant pressure
bubble would be more stable. They have shown that such flows can be theor-
etically obtained in at least two ways either by producing a special type of
vortex breakdown (see Section 5.6) in a swirling flow or by using tangential
vorticity without any swirling velocity. Perhaps the simplest way of viewing
both flows is as a separation bubble. If an axisymmetric flow with a suffi-
ciently strong, positive, radial gradient in total pressure is decelerated it
will separate from its axis. Subsequent reacceleration will force the
separation bubble to close. The radial gradient in total pressure for an axi-
symmetric flow may be caused by either axial vorticity (a swirling flow) or

"smoke-rings" in axial motion).

tangential vorticity (a bundle of coaxial
Although the closed bubble (see Fig. 5.10) may be formed by a wide class of
flows, only very special conditions may be expected to lead to the condition
of zero velocity, constant pressure, within the separated bubble. The ques-
tion of the stability of such a bubble filled with a heavier fluid is still a

matter for speculation.
8.6 Particle or Droplet Containment

Since containment for a gaseous core nuclear rocket has proven so

elusive, it appears useful to reexamine the liquid core concept. The
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temperature limit of such a concept is imposed by fuel vaporization. Nelson,
Grey, and Williams (1965) argue that specific impulses as high as 1500 seconds
may be achieved if the uranium fuel is highly diluted with a low wvapor
pressure moderator such as zirconium carbide. This is not far below the 1800
seconds estimated by McLafferty (1970) for the nuclear light bulb concept.

Is the possibility of containing a liquid fuel sufficiently closer to the
state of the art than that of containing a gaseous fuel to more than compen-

sate for the poorer performance?

The problem of particle or droplet containment is very close to that
of centrifugally separating particles from a particle laden fluid. The engin-
eering art of cyclone separators used for this purpose is well developed (see
Section 9.1). Equation 9.1-13 may be used to estimate the lower bound on
particle size which may be readily separated from a hot hydrogen flow. For a
ZrC particle in a hydrogen stream at 100 atm. pressure and 5,000°K,
pp/p = 104, v =~1 cm2/sec and a, > 3 x lO5 cm/sec. For criticality % needs
to be of the order of 1 m and T.o the throat radius, is determined by the
thrust level; r, * 4 cm corresponds to roughly 10,000 1b. thrust. When these
values are used in Eq. 9.1-13 it shows that particles with a diameter larger
than ® 0.1 microns should be readily separated from the flow. Thus contain-
ment for a liquid core rocket should be within the state of the art.

Perhaps a more difficult problem for any liquid core concept is the
liquid-solid boundary. If swirl is provided by a rotating porous cylinder
as in the Nelson, Grey and Williams concept, flow thru the cylinder, with a
heavy fluid on the inside of the cylinder and a light fluid on the outside,
leads to a Rayleigh~Taylor type instability. This has been experimentally
demonstrated by McQuirk and Parks (1969). If swirl is provided by tangential
jets as in a cyclone separator, the problem reduces to minimizing the inter-
action between the liquid and the wall. This problem has two facets: first
the shear between the fluid mixture and the wall will reduce the swirl
injected into the chamber and ultimately limit the density ratio of contained
fluid mixture to thru flow; and second the heat transfer to the wall must not
exceed 1/4 to 1/2 of the energy generated in the liquid or the Isp of the

system will be compromised (see Eq. 8.2-2) by the energy balance in the wall.

Using the double cylinder arrangement shown in Fig. 8.13, experiments

at the Aerospace Research Laboratories of Wright-Patterson Air Force Base
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(Jackomis and von Ohain, 1970) have been able to achieve extremely high
particle concentrations within the chamber without particle deposition at the

cavity walls. Ratios of particle mass to the mass of the carrier gas

(corresponding to Ef/ppl)_of the order of 100 have been demonstrated. This

provides adequate containment for an attractive reactor concept (Tang,

Stefanko, Dickson and Drawbaugh, 1970). A schematic of the reactor is given

in Fig. 8.13. The question of whether the interactions between the carrier

gas, the contained particles and the wall are adequate for proper heat

transfer is yet to be determined.
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IX. OTHER VORTEX TUBES
9.1 Cyclone Separator

The most wide spread application of a confined vortex flow is that of
a cyclone separator. The popular arrangement shown in Fig. 1.4 is only
slightly different from that given in a German patent granted in 1855.
Design modifications over the last century have proceeded on an empirical
basis. Two books, one edited by Rietema and Verver (1961) and another
written by Bradley (1965), give detailed information on dimensions and per-
formance of cyclones for different applications. What is intended in this
chapter is to present a simple theory for this standard cyclone and then to
compare the results of the theory with some of the empirical design para-

meters.

The flow pattern sketched in Fig. 1.4 implies that the radial velocity
thru the main part of the chamber is essentially zero with all of the thru
flow passing thru the boundary layer. The conical shape of the cyclone in-
sures that the boundary-layer flow towards the tip with its attached collector
will be much larger than the boundary layer flow on the flat end of the
chamber. The extension of the exhaust pipe into the chamber to form a so-—
called "vortex finder'" ensures that even the small boundary-layer flow on
the flat end wall will be forced to negotiate an extremely sharp turn and
have most of the particles that are carried thru it separated from the ex-—
haust flow. Most of the separation takes place as the majority of the flow

passes from the tip of the cone, across the chamber, to the exhaust.

To analyze this model of a cyclone separator, it is convenient to first
consider a much simpler ideal problem of centrifugal separation. Consider
the uniform rotation of a one-dimensional flow of a fluid laden with parti-
cles of a uniform diameter d and density pp. Assume the fluid velocity to
be a constant w in the axial direction x with a uniform angular rotation Q
about the z axis. The radial velocity of the particles,uP may be obtained
from a balance between drag forces on the particle and centrifugal forces,
with the inertia of the particles assumed negligible. For Stokes drag law
this gives

d2 er

uP =18 (DP—O) e (9.1-1)
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The distribution of particles in the z direction n(z) may be obtained from

the continuity equation for the particles

dnwr , dnur _
3z | 8z

0 (9.1-2)

If the particles are assumed to be removed from the flow when they reach some
radius r, then it is consistent with Egs. 9.1-1 and 9.1-2 to assume that n is

a function of z only. Substitution of Eq. 9.1-1 into 9.1-2 gives

2 2
which can be integrated to give
i} 1 %, 2d° 9z
n(z) = n(0) exp - [§-(p -1) " - 1 (9.1-4)

This simple model of separation can be used to estimate the separation
obtained in the cyclone model given in Fig. 1l.4. The flow from the tip of
the cone to the exhaust is not much different from that assumed in this
simple model. The primary requirement in relating Eq. 9.1-4 to cyclone per-
formance is to relate Q and w to pressure drop and flow capacity since these
are the quantities most conveniently measured. If essentially all of the flow

passes thru the conical boundary layer and then across the chamber
w * /e %o (9.1-5)

and the relationship between pressure drop Ap and rotation { is given by
the swirl parameter @ from Eq. 2.2-8
1/2
Q=% 2 (9.1-6)
T, p

Eqs. 9.1-5 and 9.1-6 may be used to reduce Eq. 9.1-4 to

p 2
n(e) = n(0) exp - [% CER —lfﬁiéRELa 1 (9.1-7)

0
or, rearranging

o 2
p _ydpL _9 12 n(0)
G- TR 2 n®) (9.1-8)

[l

=]

In order to optimize separation, it is clear from Eq. 9.1-8 that o

should be maximized. In Section 6.5 it was argued that the maximum stable
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value of ¢ corresponds to the value of ¢ that maximizes the flow of angular
momentum. This occurs for ¢ ® 0.5. Thus for a properly designed cyclone

it should be possible to have

o} 2
P 1y d2L : n(0)
G D TR TR (9.1-9)

A convenient measure of a cyclone's performance is to determine the particle
size which is only 507 separated out. If this size particle is denoted by

d50 then Eq. 9.1-9 gives

p 2
P _qy 9502p L - -
(p 1) N 4 (9.1-10)
Figure 9.1 is a plot of the dimensionless grouping given in Eq. 9.1-10

for various values of the dimensional quantities for what Rietema and Verver

(1961) refer to as "well designed" cyclones. The agreement with Eq. 9.1-10

is even better then the simple theory would appear to warrant.
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Fig. 9.1 Correlation of particle size separated out at different pressure
drops for different fluids. (Rietema and Verver,p. 53).

Why isn't it necessary to include any influence of turbulence in deter-
mining the concentration distribtuion of particles? The distribution given
in Eq. 9.1-4 is not influenced by any concentration diffusion. Small random

velocity fluctuations should average out and leave this distribution unaffected.

Equation 9.1-10 should not be expected to remain valid as large pressure
drops are applied across the chamber and the flow chokes sonically. To deter-
mine the lower bound on particle size that may be expected to be separated out

in a cyclone it is more convenient to work in terms of w and Q. The maximum
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value of © can be estimated from the upper bound on tangential Mach number

given in Section 6.5

a
a e
max * Mt _ex 1.2 'r— (9.1-11)
max r e
e
The average value of LN is given approximately by
T gk b -
LA V¥ (1,a) a, ae/2 (9.1-12)
When Egs. 9.1-11 and 9.1~12 are substituted into Eq. 9.1-4 it leads to
2
22 vl
50 EB. a, % (9.1-13)
(p -1)

For dirt in air pp/p 2 x 103, v =z 0.2 cmzlsec and a, = 3 x 104 cm/sec

and for Rietema and Verver's '"welil designed" cyclone re/l = 0.03. This gives

-5 1/2
d50 = 1.4 x 10 r, (9.1-14)
with both d and r in cm. Or for d in microns and r in cm.
50 e 50 e
1/2
d50 ~ 0.1 r, (9.1-15)

Thus particles of the order of 0.1 p can be separated out in a small cyclone

separator.

It is evident from both Egs. 9.1-10 and 9.1-15 that the smaller the
cyclone the better it will perform as a separator. In designing a separtion
system it is well to set the size of the cyclones by the requirement on part-
icle size to be separated out at a given pressure drop, and then determine

the number required to obtain the desired flow capacity.

What about the geometrical ratios of a well designed cyclone? If the
flow pattern assumed in the separation model is to be achieved with minimum
dissipation within the chamber it is desirable to have the radial stagnation
surface, ;, occur just outside the radius of the exhaust. The results of
Section 6.3 may be applied to estimate the length of the cone required to do
this. When both I and dr/ds are assumed constant in Eq. 6.3-4 it is possible
to generalize the definition of B to include the effect of the conical wall.
Assuming all the flow to pass thru the boundary layer on the conical wall

the appropriate generalization is
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2mpr T A_C
o0

B = oo ll (9.1-16)
(- /ds) m
To have t = r_ then Eqs. 6.3-12 and 9.1-16 lead to
Lo Yds) @
e 4.9 Cf 2ﬂproFO (9.1-17)
For a slender cone
dr I —re ro
== - o = -
-5 = 172 /L (9.1-18)

[L2 + (ro—re)z]

The ratio ﬁ/ZHQrOFO may be written in terms of dimensionless exhaust
parameters as

mo_
ﬂ T
2 pro o

e o]

Te
5y (9.1-19)
o

Equations 9.1-19 and 9.1-18 may now be combined with Eq. 9.1-17 to give

r, re 9.80tCf
I ::(l - -;..) — (9-1—20)

0 Q

In order to have the pressure drop associated with the inlet small in
comparison to the pressure drop across the exit it is desirable to have
(re/ro)2 << 1. On the other hand making this radius ratio too small would
unduly restrict the flow capacity of a given size device. A good compromise

appears to be re/rO z 1/3.

From Section 6.5 the maximum value of a/a'is of the order of 1, so from

Egq. 9.1-20

€z 7 ¢ (9.1-21)

Rietema and Verver give values of 2/r0= 10 and ro/re = 3 as optimum dimensions
for a cyclone. Equation 9.1-21 would predict their value of re/l = 0.03

for C_ = 0.004, a reasonable value of C_ for Ret between lO5 and 106. Thus

f £
the present model appears consistent with the experimentally observed optimum

geometry.

Other arrangements of vortex chambers may be used for particle separatiom.

In particular, the arrangement used by Fletcher, Gyarmathy and Hasinger (1966)
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is noteworthy since it completely eliminates any possible particle losses thru
the boundary layer on the chamber wall thru which the flow exhausts. This
arrangement suggested by H. von Ohain is shown in Fig. 9.2. High momentum
fluid is used to reverse the secondary flow patterns. However, since the so
called vortex finder works fairly satisfactory in separating particles from

the boundary layer by forcing a sharp turn in this flow the sophistication of
the reverse flow chamber is not warranted for most applications. More impor-
tant gains in separation efficiencies are likely to be gained by novel arrange-

ments to use an array of small chambers in place of a single large chamber.

The separation formulae of this section are all based on Stokes drag law.
The validity of this drag law is bounded for large particles by the need to
keep the particle Reynolds number small and for small particles the need to
keep the mean free path of the fluid less than the particle diameter. These
limits can be somewhat extended by applying the Oseen correction for the
Reynolds number effect and the Cunningham correction for effects of slip flow.

In this case

1+ %6 —psd
Drag = 3mudu
1+ 2.5x/4 (9.1-22)

where A is the mean free path of the fluid.
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Filg. 9.2 sSimplified flow diagram of a swirl chamber with reversed
secondary flow (Fletcher, Gyarmathy and Hasinger, 1966).
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9.2 Ranque-Hilsch Tube

Ranque applied for a French patent in 1931 for "an apparatus for obtain-
ing from a fluid under pressure two currents of fluids at different tempera-
tures'". Ranque's device was similar to that sketched in Fig. 1.3. It re-~
ceived little attention until Hilsch in 1944 tried to develop it to cool under-
ground mines. Hilsch (1947) gave performance data and optimum dimensions for
the vortex tube. The possibility of an extremely simple device replacing
many of the more complicated refrigeration appliances stimulated a large
number of investigations in the next few years. By 1950, it had become clear
that the vortex tube made a very inefficient refrigerator. Fulton (1950)
quotes an efficiency of the order of 1%. Over the past 20 years the device
has remained an intriguing subject for study. Westley (1954) lists 116 refer-
ences related to the Ranque-Hilsch Tube. The more easily accessible references
published in the last 10 years are included in the present bibliography. The
purpose of this section is to summarize the experimental performance and give

a rough analysis.

One of the best sources of data for determining optimum performance of
the tube is Westley (1957). He found that the maximum temperature drop ratio

(TO In T0 cold)/To in occuried when the cold outlet radius was approximately

0.4 times that of the tube radius and the ratio of inlet area-to-tube cross
sectional area approximately 0.2. No optimum L/D was reported. The only re-
quirement appears to be that L/D exceed approximately 10. The maximum temper-
ature drop occurs for a ratio of cold flow to total flow between 0.15 and 0.35.
Figure 9.3 is Westley's curve of maximum temperature drop as a function of

pressure ratio for his optimum geometry.

As seen in Chapter 6 the detailed prediction of the three-dimensional
flow pattern in a highly turbulent vortex tube is still beyond the state of
the art. Since the energy separation depends upon this flow pattern it is to
be expected that the numerous attempts to predict the performance of a Ranque-
Hilsch tube (e.g. Kassner and Knoernschild, 1947; Fulton, 1950; Deissler and
Perlmutter, 1960; Lay, 1959; Sibulkin, 1961; and Linderstrom-Lang, 1970),
although each contributing to the understanding of tube, have not met with
complete success. Rather than pursue a critique of these papers a semi-

quantitative analysis of the mechanism will be given here by circumventing
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Fig. 9.3 Variation of temperature drop efficiency with
pressure ratio at optimum cold outlet size,
optimum valve setting and fixed inlet diameter
(Westley, 1952).

most of the flow details within the chamber.

First, it is important to note the internal counter flow pattern
sketched in Fig. 9.4. As seen in Chapter 111 this pattern is a consequence
of the tendency of the swirling flow towards two-dimensionality. However,
the tube is made long enough that two-dimensionality cannot be preserved due
to torque on the internal cylindrical wall. If the tube length is extended
beyond the counterflow cell the flow pattern in the cold end should be unaffec-

ted. Thus as long as the tube wall is insulated the temperature separation
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in the tube should be unaffected by L/D as long as some minimum is exceeded.
As a consequence of the counterflow pattern the radial velocity is very small

within a few diameters of the cold outlet.

ii!E!EEEEEEEEEéD
.__————"/ —
- Cold

> Flow

T

High Pressure
Tangential Inlet

Fig. 9.4 Sketch of flow streamlines near the cold outlet of a Ranque-
Hilsch Tube.

Second, the internal torque exerted between concentric rings of fluid
produces a radial transport of energy as originally pointed out by Ranque
(1933). As long as the angular velocity decreases with increasing radius
this transfer of energy due to work done on the fluid will be directed out-
ward. This will be counterbalanced by an energy flow inward due to heat
transfer. As pointed out by Fulton (1950) the flow of energy in a laminar
irrotational vortex due to the work term should exceed the flow due to heat
transfer as long as Pr > 1/2. This can be seen from Mack's solution given
in Eq. 4.1-8. 1In fact, it should be possible to estimate a bound on the
energy separation from this expression if the assumption is made that turbu-
lent transport can be related to laminar simply by using a turbulent Prandtl
number. (This assumption has as yet not been justified.) The maximum tan-
gential Mach number in the tube may be expected to occur near the dividing
line between the counter flows in the vicinity of the cold outlet. If this
reverse flow has persisted long enough in the axial direction to permit the
radial transfer of energy to reach the same equilibrium it would for w = O,
then Eq. 4.1-8 may be used directly to relate total temperature drop to maxi-
mum tangential Mach number.

T - r - 1/2) Mf:
in. cold - max (9.2-1)
To i + Px M2
in v -1 max
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In Section 6.5 it was argued that Mt will increase as the pressure ratio

across the vortex tube is increased until an upper bound of approximately 1.2

is reacheddue to an instability in the exhaust flow. A value of Mt = 1.2
and an assumed turbulent Prandtl number of 1 in Eq. 9.2-1 gives max
To - To
—in_cold - o.185 (9.2-2)
o,
in

Although this is somewhat lower than Westley's asymptotic value of 0.22 it is
close enough to suggest that the model is basically sound. In fact agreement
can be achieved by a 10Z change in either Mt or Pr neither of which are

max
known to that accuracy.

The pressure ratio required to reach this maximum separation depends up-
on dissipation in the tube, and thus would be more difficult to predict,
but Fig. 6.18 shows that a pressure ratio of 7 to 8 was required to reach
this asymptotic value of Mt. Since the Ranque-Hilsch tube may be expected to
have larger wall dissipation than the arrangement used by Poplawski and

Pinchak it is expected that a somewhat larger pressure ratio would be required.

9.3 Miscellaneous Vortex Tubes

The applications considered in Chapters VII, VIII, and in Sections 9.1
and 9.2 do not exhaust all the possibilities for confined vortex flows. Many
other devices involving such a flow are referred to in the attached bibliog-
raphy. In compiling the bibliography an attempt was made to include the
literature directly concerned with confined vortices which has been published
in the last 10 years. Older references were included only when they were

deemed important enough to be referred to in the body of the review.

Although somewhat outside the scope of this review of confined vortex
devices, it seems useful to refer to two different flows closely related to the
vortex tube, gas centrifuges and meteorological vortices. Gas centrifuges
share many of the secondary flow features of the vortex tube. They differ in
that swirl is supplied by rotating walls and flow patterns which hold radial
flow to a minimum are chosen to maximize the diffusion parameter in Eq. 8.3-1.
The basic theory of centrifuges as applied to isotope separation was given by
Cohen (1951) and reference to more recent literature may be found in Wensel

(1967) and Krauze (1970). Meteorological vortices are often modeled in the
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laboratory as confined vortices, but the boundary conditions appear to differ
in at least two essential ways. The density gradient with altitude plays an
important role in the dynamics of both the tornado and the hurricane and the
horizontal extent of an atmospheric vortex is set by stability conditions
rather than confining walls. A review of meteorological vortices was given

by Morton (1966).
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